论文标题

对同质网络上SIRS流行病学模型的几何分析

A geometric analysis of the SIRS epidemiological model on a homogeneous network

论文作者

Jardón-Kojakhmetov, Hildeberto, Kuehn, Christian, Pugliese, Andrea, Sensi, Mattia

论文摘要

我们研究了通过应用瞬间闭合方法获得的均匀图的SirS流行病学模型的快速慢版本。我们使用GSPT来研究该模型,考虑到感染周期比平均免疫持续时间短得多。我们表明,动力学是通过一系列快速和慢速流进行的,可以通过二维图来描述,在某些假设下,可以将其近似为1维图。使用此方法,与数值分叉工具一起,我们表明该模型可以产生定期解决方案,与基于均匀混合的相应模型不同。

We study a fast-slow version of an SIRS epidemiological model on homogeneous graphs, obtained through the application of the moment closure method. We use GSPT to study the model, taking into account that the infection period is much shorter than the average duration of immunity. We show that the dynamics occurs through a sequence of fast and slow flows, that can be described through 2-dimensional maps that, under some assumptions, can be approximated as 1-dimensional maps. Using this method, together with numerical bifurcation tools, we show that the model can give rise to periodic solutions, differently from the corresponding model based on homogeneous mixing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源