论文标题

手术数据科学 - 从概念到临床翻译

Surgical Data Science -- from Concepts toward Clinical Translation

论文作者

Maier-Hein, Lena, Eisenmann, Matthias, Sarikaya, Duygu, März, Keno, Collins, Toby, Malpani, Anand, Fallert, Johannes, Feussner, Hubertus, Giannarou, Stamatia, Mascagni, Pietro, Nakawala, Hirenkumar, Park, Adrian, Pugh, Carla, Stoyanov, Danail, Vedula, Swaroop S., Cleary, Kevin, Fichtinger, Gabor, Forestier, Germain, Gibaud, Bernard, Grantcharov, Teodor, Hashizume, Makoto, Heckmann-Nötzel, Doreen, Kenngott, Hannes G., Kikinis, Ron, Mündermann, Lars, Navab, Nassir, Onogur, Sinan, Sznitman, Raphael, Taylor, Russell H., Tizabi, Minu D., Wagner, Martin, Hager, Gregory D., Neumuth, Thomas, Padoy, Nicolas, Collins, Justin, Gockel, Ines, Goedeke, Jan, Hashimoto, Daniel A., Joyeux, Luc, Lam, Kyle, Leff, Daniel R., Madani, Amin, Marcus, Hani J., Meireles, Ozanan, Seitel, Alexander, Teber, Dogu, Ückert, Frank, Müller-Stich, Beat P., Jannin, Pierre, Speidel, Stefanie

论文摘要

一般和机器学习方面的最新发展发展改变了专家设想手术的未来的方式。外科数据科学(SDS)是一个新的研究领域,旨在通过捕获,组织,分析和数据建模来提高介入医疗保健的质量。尽管在放射学和临床数据科学领域已经研究了越来越多的数据驱动方法和临床应用,但手术仍缺乏转化成功案例。在本出版物中,我们阐明了根本原因,并为该领域的未来进步提供了路线图。基于涉及SD领域的主要研究人员的国际研讨会,我们审查了当前的实践,关键成就和计划,以及与该领域有关的许多主题的可用标准和工具,即(1)基础架构,用于数据习惯,存储和访问监管性约束的情况下,(2)数据注释和(2)数据注释和共享(2)数据分析和(3)数据分析。我们进一步补充了(4)对当前可用的SDS产品以及学术界的转化进度的综述,以及(5)基于国际多轮Delphi流程,用于更快的临床翻译和SDS的全部潜力的路线图。

Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源