论文标题

快速,精确且可扩展的动态乘车共享

Fast, Exact and Scalable Dynamic Ridesharing

论文作者

Buchhold, Valentin, Sanders, Peter, Wagner, Dorothea

论文摘要

我们通过派遣一组共享车辆来研究为一组乘车请求服务的问题,这是由Uber和Lyft等乘车公司面临的。将来,对于有效使用大型自动驾驶汽车,将来解决此问题可能至关重要。由于找到最小化总驾驶时间的整个请求的解决方案是NP完成的,因此大多数实用的方法一一处理请求。每个请求都插入任何车辆的路线中,以使驾驶时间的增加最小化。尽管该变体可以在多项式时间内解决,但即使使用了不精确过滤术,在当前实现中仍然需要大量时间。在这项工作中,我们提出了一种基于(可自定义的)收缩层次结构的新颖算法,用于查找最佳插入。我们的算法发现,事实证明的解决方案仍然比目前在行业和学术界使用的最先进算法快30倍,并且比例更好。当在迭代传输模拟中使用时,我们的算法将减少大刻刻场景的模拟时间,从几天到几个小时,许多请求。

We study the problem of servicing a set of ride requests by dispatching a set of shared vehicles, which is faced by ridesharing companies such as Uber and Lyft. Solving this problem at a large scale might be crucial in the future for effectively using large fleets of autonomous vehicles. Since finding a solution for the entire set of requests that minimizes the total driving time is NP-complete, most practical approaches process the requests one by one. Each request is inserted into any vehicle's route such that the increase in driving time is minimized. Although this variant is solvable in polynomial time, it still takes considerable time in current implementations, even when inexact filtering heuristics are used. In this work, we present a novel algorithm for finding best insertions, based on (customizable) contraction hierarchies with local buckets. Our algorithm finds provably exact solutions, is still 30 times faster than a state-of-the-art algorithm currently used in industry and academia, and scales much better. When used within iterative transport simulations, our algorithm decreases the simulation time for largescale scenarios with many requests from days to hours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源