论文标题
衡量社区医疗保健的数据收集勤奋
Measuring Data Collection Diligence for Community Healthcare
论文作者
论文摘要
数据分析具有巨大的潜力,可以在低资源社区中提供有针对性的收益,但是,高质量公共卫生数据的可用性主要是由于社区卫生工作者(CHWS)的非履约数据收集,这是发展中国家的重大挑战。在这项工作中,我们定义并测试数据收集勤奋得分。通过构建域专家的指导来设计有用的原始数据数据表示,我们使用我们设计简单自然的分数来解决这个具有挑战性的未标记数据问题。分数的一个重要方面是CHW的相对评分,该评分隐含地考虑了当地的上下文。数据还聚集并解释这些群集提供了对每个数据收集器的过去行为的自然解释。我们进一步预测将来的时间步骤的勤奋得分。我们的框架已通过我们在印度非政府组织的现场监视器的观察结果在地面上进行了验证。除了成功的现场测试之外,我们的工作还处于印度拉贾斯坦邦部署的最后阶段。
Data analytics has tremendous potential to provide targeted benefit in low-resource communities, however the availability of high-quality public health data is a significant challenge in developing countries primarily due to non-diligent data collection by community health workers (CHWs). In this work, we define and test a data collection diligence score. This challenging unlabeled data problem is handled by building upon domain expert's guidance to design a useful data representation of the raw data, using which we design a simple and natural score. An important aspect of the score is relative scoring of the CHWs, which implicitly takes into account the context of the local area. The data is also clustered and interpreting these clusters provides a natural explanation of the past behavior of each data collector. We further predict the diligence score for future time steps. Our framework has been validated on the ground using observations by the field monitors of our partner NGO in India. Beyond the successful field test, our work is in the final stages of deployment in the state of Rajasthan, India.