论文标题
Deep-Dup:对抗重复重复攻击框架,以压碎多租户FPGA中的深神经网络
Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep Neural Network in Multi-Tenant FPGA
论文作者
论文摘要
深度神经网络(DNN)在高性能云计算平台中的广泛部署带来了多租户云现场可编程可编程阵列(FPGA),这是一个流行的加速器选择,以提高性能,因为其硬件重编程灵活性。这种用于DNN加速的多租户FPGA设置可能会在恶意使用者严重威胁下暴露DNN干扰任务。据我们所知,这项工作是第一个探索多租户FPGA中DNN模型漏洞的工作。我们提出了一个新颖的对抗攻击框架:Deep-Dup,在该框架中,对抗租户可以在FPGA的受害者租户中向DNN模型注入对抗性故障。具体而言,她可以积极地将FPGA的共享电源分配系统与恶意的电动电路超载,从而实现对抗性重复重复(AWD)硬件攻击,从而在芯片内存和芯片缓冲区之间的数据传输过程中复制某些DNN重量套件,以招架受害者的DNN功能。此外,为了确定给定恶意目标的最脆弱的DNN重量套件,我们提出了一种通用的脆弱的重量套件搜索算法,称为渐进的差分进化搜索(P-DES),这是第一次适应深度学习的白盒和黑盒攻击模型。提出的深入DUP在开发的多租户FPGA原型中进行了实验验证,用于两个流行的深度学习应用,即对象检测和图像分类。成功的攻击在六个流行的DNN架构中得到了证明(例如,Yolov2,Resnet-50,Mobilenet等)。
The wide deployment of Deep Neural Networks (DNN) in high-performance cloud computing platforms brought to light multi-tenant cloud field-programmable gate arrays (FPGA) as a popular choice of accelerator to boost performance due to its hardware reprogramming flexibility. Such a multi-tenant FPGA setup for DNN acceleration potentially exposes DNN interference tasks under severe threat from malicious users. This work, to the best of our knowledge, is the first to explore DNN model vulnerabilities in multi-tenant FPGAs. We propose a novel adversarial attack framework: Deep-Dup, in which the adversarial tenant can inject adversarial faults to the DNN model in the victim tenant of FPGA. Specifically, she can aggressively overload the shared power distribution system of FPGA with malicious power-plundering circuits, achieving adversarial weight duplication (AWD) hardware attack that duplicates certain DNN weight packages during data transmission between off-chip memory and on-chip buffer, to hijack the DNN function of the victim tenant. Further, to identify the most vulnerable DNN weight packages for a given malicious objective, we propose a generic vulnerable weight package searching algorithm, called Progressive Differential Evolution Search (P-DES), which is, for the first time, adaptive to both deep learning white-box and black-box attack models. The proposed Deep-Dup is experimentally validated in a developed multi-tenant FPGA prototype, for two popular deep learning applications, i.e., Object Detection and Image Classification. Successful attacks are demonstrated in six popular DNN architectures (e.g., YOLOv2, ResNet-50, MobileNet, etc.)