论文标题
可呈现的$(\ infty,n)$ - 类别
Presentable $(\infty, n)$-categories
论文作者
论文摘要
我们为每个$ n \ geq 1 $定义对称的单体$(\ infty,n+1)$ - 类别$ n \ mathrm {pr}^l $我们称之为呈现的对象的对象$(\ infty,n)$ - 类别,概括了呈现的$(\ infty,1)$ - 类别的通常理论。我们表明,每个对象$ \ MATHCAL {C} $ in $ n \ MATHRM {pr}^l $都有一个基础$(\ infty,n)$ - 类别$ψ_n(\ Mathcal {c})$通往右伴随的圆锥形限制的术语。
We define for each $n \geq 1$ a symmetric monoidal $(\infty, n+1)$-category $n\mathrm{Pr}^L$ whose objects we call presentable $(\infty,n)$-categories, generalizing the usual theory of presentable $(\infty,1)$-categories. We show that each object $\mathcal{C}$ in $n\mathrm{Pr}^L$ has an underlying $(\infty,n)$-category $ψ_n(\mathcal{C})$ which admits all conical colimits, and that conical colimits of right adjointable diagrams in $ψ_n(\mathcal{C})$ can be computed in terms of conical limits after passage to right adjoints.