论文标题

DeepFoldit-深钢筋学习神经网络折叠蛋白

DeepFoldit -- A Deep Reinforcement Learning Neural Network Folding Proteins

论文作者

Panou, Dimitra N., Reczko, Martin

论文摘要

尽管取得了很大的进步,但初始蛋白结构的预测仍然是最佳的。众包方法是在线拼图视频游戏折叠,它提供了几种有用的结果,这些结果匹配甚至超过了算法计算的解决方案。使用折叠,Wefold人群在蛋白质结构预测技术的批判性评估中有几次成功参与。根据最近的折叠独立版本,我们使用具有经验重播的Q学习方法,培训了一个名为DeepFoldit的深钢筋神经网络,以提高分配给展开蛋白质的分数。本文通过高参数调整着眼于模型改进。我们通过检查不同的模型体系结构和更改超参数值以提高模型的准确性来检查各种实现。新的模型超参数也提高了其概括能力。最新实施的初始结果表明,鉴于一组小型展开的训练蛋白,DeepFoldit学习了动作序列,以改善训练集和新型测试蛋白上的分数。我们的方法将折叠的直观用户界面与深度加固学习的效率相结合。

Despite considerable progress, ab initio protein structure prediction remains suboptimal. A crowdsourcing approach is the online puzzle video game Foldit, that provided several useful results that matched or even outperformed algorithmically computed solutions. Using Foldit, the WeFold crowd had several successful participations in the Critical Assessment of Techniques for Protein Structure Prediction. Based on the recent Foldit standalone version, we trained a deep reinforcement neural network called DeepFoldit to improve the score assigned to an unfolded protein, using the Q-learning method with experience replay. This paper is focused on model improvement through hyperparameter tuning. We examined various implementations by examining different model architectures and changing hyperparameter values to improve the accuracy of the model. The new model hyper-parameters also improved its ability to generalize. Initial results, from the latest implementation, show that given a set of small unfolded training proteins, DeepFoldit learns action sequences that improve the score both on the training set and on novel test proteins. Our approach combines the intuitive user interface of Foldit with the efficiency of deep reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源