论文标题

减少使用按键点提取和数字木偶的视频流的延迟和带宽

Reducing latency and bandwidth for video streaming using keypoint extraction and digital puppetry

论文作者

Prabhakar, Roshan, Chandak, Shubham, Chiu, Carina, Liang, Renee, Nguyen, Huong, Tatwawadi, Kedar, Weissman, Tsachy

论文摘要

Covid-19使视频通信成为信息交流的最重要模式之一。虽然已经对视频流管道的优化进行了广泛的研究,尤其是新型视频编解码器的开发,但需要进一步改善视频质量和延迟,尤其是在较差的网络条件下。本文通过实现以关键点为中心的编码器来替代传统编解码器的替代方案,该编码器依赖于视频提要中的关键点信息的传输。解码器使用流键点来生成一个保留输入提要中语义特征的重建。为了关注视频通话应用程序,我们通过网络检测并传输身体姿势和面部网格信息,网络以动画木偶的形式显示在接收器上。使用有效的姿势和面部网格检测与基于骨架的动画结合使用,我们演示了一个需要低于35 kbps带宽的原型,这比典型的视频通话系统降低了数量级。由于网格提取和动画在标准笔记本电脑上增加的计算潜伏期低于120ms,展示了该框架对实时应用程序的潜力。这项工作的代码可在https://github.com/shubhamchandak94/digital-puppetry/上获得。

COVID-19 has made video communication one of the most important modes of information exchange. While extensive research has been conducted on the optimization of the video streaming pipeline, in particular the development of novel video codecs, further improvement in the video quality and latency is required, especially under poor network conditions. This paper proposes an alternative to the conventional codec through the implementation of a keypoint-centric encoder relying on the transmission of keypoint information from within a video feed. The decoder uses the streamed keypoints to generate a reconstruction preserving the semantic features in the input feed. Focusing on video calling applications, we detect and transmit the body pose and face mesh information through the network, which are displayed at the receiver in the form of animated puppets. Using efficient pose and face mesh detection in conjunction with skeleton-based animation, we demonstrate a prototype requiring lower than 35 kbps bandwidth, an order of magnitude reduction over typical video calling systems. The added computational latency due to the mesh extraction and animation is below 120ms on a standard laptop, showcasing the potential of this framework for real-time applications. The code for this work is available at https://github.com/shubhamchandak94/digital-puppetry/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源