论文标题

与希钦表示相关的teichmüller空间上的能量的严格多数

Strict plurisubharmonicity of the energy on Teichmüller space associated to Hitchin representations

论文作者

Slegers, Ivo

论文摘要

令$σ$为属的闭合表面至少两个,$ρ\colonπ_1(σ)\ to g $ a hitchin表示为$ g = \ text {psl}(n,n,\ m asthbb {r})$,$ \ $ \ text {psp} $ \ text {g} _2 $。我们考虑了$σ$的TeichMüller空间上的能量功能$ E $,该$ $ \ Mathcal {t}(σ)$分配给每个点的$ \ Mathcal {t}(σ)$相关的$ρ$ Equivariant谐波映射的能量。本文的主要结果是$ e $严格是plurisubharmonic。作为推论,我们获得了$ 3 \ cdot \ text {enus}(σ)-3 $的上限,在能量功能的任何临界点的索引上。

Let $Σ$ be a closed surface of genus least two and $ρ\colon π_1(Σ) \to G$ a Hitchin representation into $G=\text{PSL}(n,\mathbb{R})$, $\text{PSp}(2n,\mathbb{R})$, $\text{PSO}(n,n+1)$ or $\text{G}_2$. We consider the energy functional $E$ on the Teichmüller space of $Σ$ which assigns to each point in $\mathcal{T}(Σ)$ the energy of the associated $ρ$-equivariant harmonic map. The main result of this paper is that $E$ is strictly plurisubharmonic. As a corollary we obtain an upper bound of $3 \cdot \text{genus}(Σ) -3$ on the index of any critical point of the energy functional.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源