论文标题
两步溶解的SKT剪切
Two-step solvable SKT shears
论文作者
论文摘要
我们使用剪切构造来构建和分类一系列两步可解决的谎言组,并承认剩余的SKT结构。我们将其简化为SKT剪切数据的规范,以实现Abelian Lie代数,然后在不同的情况下对此进行了更深入的研究。我们获得$ \ mathfrak {g} $的分类和结构结果,几乎是Abelian,用于派生的代数$ \ mathfrak {g}'$ of Codimension 2,而不是$ J $ -Invariant,$ \ Mathfrak {g}'$完全是真实的,对于$ \ \ Mathfrak of a d。第六维的可解决的SKT代数。
We use the shear construction to construct and classify a wide range of two-step solvable Lie groups admitting a left-invariant SKT structure. We reduce this to a specification of SKT shear data on Abelian Lie algebras, and which then is studied more deeply in different cases. We obtain classifications and structure results for $\mathfrak{g}$ almost Abelian, for derived algebra $\mathfrak{g}'$ of codimension 2 and not $J$-invariant, for $\mathfrak{g}'$ totally real, and for $\mathfrak{g}'$ of dimension at most 2. This leads to a large part of the full classification for two-step solvable SKT algebras of dimension six.