论文标题
双相式抛物线方程弱解的最佳界限结果
An optimal boundedness result for weak solutions of double phase quasilinear parabolic equations
论文作者
论文摘要
我们获得了形式的双相式抛物线方程的弱解的局部界限 \ [u_t- \ text {div} \ left(| \ nabla u |^{p-2} \ nabla u+a(x,x,x,t)| \ nabla u |^{q-2} \ nabla u \ right)= 0,\],我们施加了限制$ \ frac $ \ frac <2n} $ 0 \ leq a(x,t)\ leq m $是可测量的,$ q <p \ frac {n+1} {n-1} $。
We obtain local boundedness of weak solutions of double phase quasilinear parabolic equations of the form \[u_t-\text{div} \left(|\nabla u|^{p-2}\nabla u+a(x,t)|\nabla u|^{q-2}\nabla u\right)=0,\] where, we have imposed the restrictions $\frac{2N}{N+2}<p<\infty$, $0\leq a(x,t)\leq M$ is measurable and $q < p\frac{N+1}{N-1}$.