论文标题

使用PI-VAE学习可识别的高维神经活动的潜在潜在模型

Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE

论文作者

Zhou, Ding, Wei, Xue-Xin

论文摘要

在大脑中同时记录数百个神经元活动的活动的能力已经提出了对开发适当的统计技术来分析此类数据的需求。最近,已经提出了深层生成模型来拟合神经种群的反应。尽管这些方法具有灵活性和表现力,但缺点是它们可能难以解释和识别。为了解决这个问题,我们提出了一种整合潜在模型和传统神经编码模型的关键成分的方法。我们的方法PI-VAE的灵感来自可识别的变异自动编码器的最新进展,我们适应适合于神经科学应用。具体而言,我们建议构建神经活动的潜在变量模型,同时对潜在变量和任务变量之间的关系进行建模(非神经变量,例如感觉,运动和其他可观察到的状态)。任务变量的合并导致模型不仅受到更大的约束,而且还显示出可解释性和可识别性的质量改善。我们使用合成数据验证PI-VAE,并将其应用于大鼠海马和猕猴运动皮质的神经生理数据集。我们证明了PI-VAE不仅更适合数据,而且还为神经代码的结构提供了意想不到的新颖见解。

The ability to record activities from hundreds of neurons simultaneously in the brain has placed an increasing demand for developing appropriate statistical techniques to analyze such data. Recently, deep generative models have been proposed to fit neural population responses. While these methods are flexible and expressive, the downside is that they can be difficult to interpret and identify. To address this problem, we propose a method that integrates key ingredients from latent models and traditional neural encoding models. Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder, which we adapt to make appropriate for neuroscience applications. Specifically, we propose to construct latent variable models of neural activity while simultaneously modeling the relation between the latent and task variables (non-neural variables, e.g. sensory, motor, and other externally observable states). The incorporation of task variables results in models that are not only more constrained, but also show qualitative improvements in interpretability and identifiability. We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex. We demonstrate that pi-VAE not only fits the data better, but also provides unexpected novel insights into the structure of the neural codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源