论文标题
噪声2STACK:通过从体积数据学习来改善图像恢复
Noise2Stack: Improving Image Restoration by Learning from Volumetric Data
论文作者
论文摘要
生物医学图像很吵。成像设备本身具有物理局限性,随之而来的是信噪比,获取速度和成像深度之间的实验权衡加剧了问题。因此,降级是任何图像处理管道的重要组成部分,而卷积神经网络当前是该任务的首选方法。一种流行的方法,noise2noise,不需要干净的地面真相,而是使用第二个嘈杂的副本作为训练目标。自我监督的方法,例如noye2self和Noise2Void,通过学习信号而没有明确的目标来放松数据要求,但受单个图像中缺乏信息的限制。在这里,我们介绍了Noige2Stack,即noige2noise方法的扩展图像堆栈,以利用空间相邻平面之间的共享信号。我们对磁共振脑扫描的实验和新获取的多层显微镜数据表明,仅从堆栈中的图像邻居学习就足以超越噪声2Noise和Noise2Void,并将间隙缩小到受监督的DeNoising方法。我们的发现指出了多层生物医学图像的降级管道中的低成本,高回报的改进。作为这项工作的一部分,我们发布了一个显微镜数据集,以建立多层图像denoisis的基准。
Biomedical images are noisy. The imaging equipment itself has physical limitations, and the consequent experimental trade-offs between signal-to-noise ratio, acquisition speed, and imaging depth exacerbate the problem. Denoising is, therefore, an essential part of any image processing pipeline, and convolutional neural networks are currently the method of choice for this task. One popular approach, Noise2Noise, does not require clean ground truth, and instead, uses a second noisy copy as a training target. Self-supervised methods, like Noise2Self and Noise2Void, relax data requirements by learning the signal without an explicit target but are limited by the lack of information in a single image. Here, we introduce Noise2Stack, an extension of the Noise2Noise method to image stacks that takes advantage of a shared signal between spatially neighboring planes. Our experiments on magnetic resonance brain scans and newly acquired multiplane microscopy data show that learning only from image neighbors in a stack is sufficient to outperform Noise2Noise and Noise2Void and close the gap to supervised denoising methods. Our findings point towards low-cost, high-reward improvement in the denoising pipeline of multiplane biomedical images. As a part of this work, we release a microscopy dataset to establish a benchmark for the multiplane image denoising.