论文标题

基于原始注释的多模式训练的人工智能解决方案,可用于COVID-19

Pristine annotations-based multi-modal trained artificial intelligence solution to triage chest X-ray for COVID-19

论文作者

Tan, Tao, Das, Bipul, Soni, Ravi, Fejes, Mate, Ranjan, Sohan, Szabo, Daniel Attila, Melapudi, Vikram, Shriram, K S, Agrawal, Utkarsh, Rusko, Laszlo, Herczeg, Zita, Darazs, Barbara, Tegzes, Pal, Ferenczi, Lehel, Mullick, Rakesh, Avinash, Gopal

论文摘要

COVID-19的大流行继续传播并影响全球人口的福祉。包括计算机断层扫描(CT)和X射线在内的前线模式对于分列Covid患者起着重要作用。考虑到资源的有限获取(硬件和训练有素的人员)和净化注意事项,CT可能不是分类可疑受试者的理想选择。人工智能(AI)辅助基于X射线进行分类和监测的应用需要经验丰富的放射科医生及时识别互联患者,并进一步描述疾病区域边界被视为有希望的解决方案。我们提出的解决方案与行业和学术社区的现有解决方案不同,并通过使用单个X射线图像来推断出功能性AI模型来分类,而使用X射线和CT数据则培训了深度学习模型。我们报告了与仅X射线训练相比,这种多模式训练如何改善解决方案。多模式解决方案将AUC(接收器工作特性曲线下的面积)从0.89增加到0.93,并且还对骰子系数(0.59至0.62)产生了积极影响,以定位病理学。据我们所知,这是通过利用多模式信息进行开发的第一个X射线解决方案。

The COVID-19 pandemic continues to spread and impact the well-being of the global population. The front-line modalities including computed tomography (CT) and X-ray play an important role for triaging COVID patients. Considering the limited access of resources (both hardware and trained personnel) and decontamination considerations, CT may not be ideal for triaging suspected subjects. Artificial intelligence (AI) assisted X-ray based applications for triaging and monitoring require experienced radiologists to identify COVID patients in a timely manner and to further delineate the disease region boundary are seen as a promising solution. Our proposed solution differs from existing solutions by industry and academic communities, and demonstrates a functional AI model to triage by inferencing using a single x-ray image, while the deep-learning model is trained using both X-ray and CT data. We report on how such a multi-modal training improves the solution compared to X-ray only training. The multi-modal solution increases the AUC (area under the receiver operating characteristic curve) from 0.89 to 0.93 and also positively impacts the Dice coefficient (0.59 to 0.62) for localizing the pathology. To the best our knowledge, it is the first X-ray solution by leveraging multi-modal information for the development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源