论文标题
Seqmobile:基于序列的高效Android恶意软件检测系统,使用移动设备上的RNN
SeqMobile: A Sequence Based Efficient Android Malware Detection System Using RNN on Mobile Devices
论文作者
论文摘要
随着Android恶意软件的扩散,对有效有效的恶意软件检测系统的需求正在上升。现有的基于设备端学习的解决方案倾向于提取有限的语法功能(例如,权限和API调用),以满足移动设备的一定时间限制。但是,语法功能缺乏可以代表潜在的恶意行为的语义,并进一步导致更强大的模型具有恶意软件检测精度。在本文中,我们提出了一个名为Seqmobile的高效Android恶意软件检测系统,该系统采用基于行为的序列功能,并利用移动设备而不是服务器上定制的深神经网络。与服务器上的传统基于序列的方法不同,为了满足性能需求,Seqmobile接受了三种有效的性能优化方法来降低时间成本。为了评估系统的有效性和效率,我们从以下各个方面进行实验1)不同经常性神经网络的检测准确性; 2)在不同移动设备上的特征提取性能,3)不同序列长度的检测准确性和预测时间成本。结果揭示了Seqmobile可以高精度有效地检测恶意软件。此外,我们的性能优化方法已被证明至少将培训和预测的性能提高了两倍。此外,为了从SOTA Tensorflow模型优化工具包中发现潜在的性能优化,我们还提供了对工具包的评估,该评估可以作为在基于序列的学习方法上利用其他系统的指导。总体而言,我们得出的结论是,我们的基于序列的方法以及我们的性能优化方法,使我们能够在移动设备的性能需求下检测恶意软件。
With the proliferation of Android malware, the demand for an effective and efficient malware detection system is on the rise. The existing device-end learning based solutions tend to extract limited syntax features (e.g., permissions and API calls) to meet a certain time constraint of mobile devices. However, syntax features lack the semantics which can represent the potential malicious behaviors and further result in more robust model with high accuracy for malware detection. In this paper, we propose an efficient Android malware detection system, named SeqMobile, which adopts behavior-based sequence features and leverages customized deep neural networks on mobile devices instead of the server. Different from the traditional sequence-based approaches on server, to meet the performance demand, SeqMobile accepts three effective performance optimization methods to reduce the time cost. To evaluate the effectiveness and efficiency of our system, we conduct experiments from the following aspects 1) the detection accuracy of different recurrent neural networks; 2) the feature extraction performance on different mobile devices, 3) the detection accuracy and prediction time cost of different sequence lengths. The results unveil that SeqMobile can effectively detect malware with high accuracy. Moreover, our performance optimization methods have proven to improve the performance of training and prediction by at least twofold. Additionally, to discover the potential performance optimization from the SOTA TensorFlow model optimization toolkit for our approach, we also provide an evaluation on the toolkit, which can serve as a guidance for other systems leveraging on sequence-based learning approach. Overall, we conclude that our sequence-based approach, together with our performance optimization methods, enable us to detect malware under the performance demands of mobile devices.