论文标题
低深度汉密尔顿模拟通过自适应产品公式
Low-depth Hamiltonian Simulation by Adaptive Product Formula
论文作者
论文摘要
已经提出了各种哈密顿模拟算法,以有效研究量子计算机上量子系统的动力学。现有的算法通常近似于时间演化运算符,该算法可能需要一个深量子电路,该电路超出了近期噪声量子设备的能力。在这里,着眼于固定输入量子状态的时间演变,我们提出了一种自适应方法来构建低深度演化电路。通过引入表征模拟误差的可测量量词,我们使用自适应策略来学习最小化该误差的浅量子电路。我们用$ \ mathrm {h_2o} $和$ \ mathrm {h_4} $分子的电子哈密顿量和带有随机系数的横向字段ISING模型来测试自适应方法。与一阶Suzuki-Trotter产品公式相比,我们的方法可以显着将电路深度(特别是两Qubit大门的数量)降低了两个阶,同时保持模拟精度。我们展示了该方法在使用量子Krylov算法求解多体动力学和求解能能光谱方面的应用。我们的工作阐明了实用的哈密顿模拟,并使用嘈杂的中间尺度量子设备进行了探讨。
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer. The existing algorithms generally approximate the time evolution operators, which may need a deep quantum circuit that is beyond the capability of near-term noisy quantum devices. Here, focusing on the time evolution of a fixed input quantum state, we propose an adaptive approach to construct a low-depth time evolution circuit. By introducing a measurable quantifier that characterizes the simulation error, we use an adaptive strategy to learn the shallow quantum circuit that minimizes that error. We numerically test the adaptive method with electronic Hamiltonians of the $\mathrm{H_2O}$ and $\mathrm{H_4}$ molecules, and the transverse field Ising model with random coefficients. Compared to the first-order Suzuki-Trotter product formula, our method can significantly reduce the circuit depth (specifically the number of two-qubit gates) by around two orders while maintaining the simulation accuracy. We show applications of the method in simulating many-body dynamics and solving energy spectra with the quantum Krylov algorithm. Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.