论文标题
动态网络中的自适应社区搜索
Adaptive Community Search in Dynamic Networks
论文作者
论文摘要
社区搜索是一个充分研究的问题,鉴于静态图和一组顶点,需要找到一个包含查询顶点的凝聚力(或密集)子图。在本文中,我们研究了时间动态网络中社区搜索的问题。我们适应时间设置\ emph {网络效率}的概念,该概念基于解决方案中所有顶点之间的成对最短路径距离。为此,我们定义了\ emph {最短路径距离}的概念:由用户定义的参数控制的时间和空间维度的线性组合。因此,我们定义了\ textsc {最小临时iNEFF级子图}问题,并表明它是\ nphard。我们开发了一种算法,该算法利用了将时间网络仔细转换为静态的定向和加权图,以及一些用于查找最小有名施泰纳树的近期近似算法。我们最终将框架推广到流式设置,在该设置中,时间图的新快照保持不断到达,我们的目标是为与滑动时间窗口相对应的时间图生成社区搜索解决方案。
Community search is a well-studied problem which, given a static graph and a query set of vertices, requires to find a cohesive (or dense) subgraph containing the query vertices. In this paper we study the problem of community search in temporal dynamic networks. We adapt to the temporal setting the notion of \emph{network inefficiency} which is based on the pairwise shortest-path distance among all the vertices in a solution. For this purpose we define the notion of \emph{shortest-fastest-path distance}: a linear combination of the temporal and spatial dimensions governed by a user-defined parameter. We thus define the \textsc{Minimum Temporal-Inefficiency Subgraph} problem and show that it is \NPhard. We develop an algorithm which exploits a careful transformation of the temporal network to a static directed and weighted graph, and some recent approximation algorithm for finding the minimum Directed Steiner Tree. We finally generalize our framework to the streaming setting in which new snapshots of the temporal graph keep arriving continuously and our goal is to produce a community search solution for the temporal graph corresponding to a sliding time window.