论文标题

超能力的图形分布和类型

Graph-like Distributions and Types in Ultrapowers

论文作者

Wheeler, Michael

论文摘要

我们研究出现在具有分布的超副措施中的类型,这些分布可以被认为是一系列图。具有图形捕获的分布的属性是由$ \ mathrm {sop} _2 $ types和类型的通用性激励,这些类型与线性订单的超能力相对应的类型。通过这项研究,我们对这些类型的分布进行了简单的设定理论描述,并在“小”外部完整子图和内部完整子图之间的差异以及对特定有限族的超级术中的内部完整子图之间的差异进行了简单的固定描述,并进行了新的描述。

We study types that appear in ultraproducts that have distributions which can be thought of as a sequence of graphs. The property of having distributions that are captured by graphs is motivated by a commonality of $\mathrm{SOP}_2$-types and types corresponding to pre-cuts in ultrapowers of linear orders. Through this study, we come to a simple set-theoretic description of the distributions for these types and to a new description of good ultrafilters in terms of the difference between "small" external complete subgraphs and internal complete subgraphs in ultraproducts of particular families of finite graphs arising from the comparability relation on the complete binary tree or the intersection of intervals in an infinite linear order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源