论文标题

UTLDR:基于代理的框架,用于建模传染病和公共干预措施

UTLDR: an agent-based framework for modeling infectious diseases and public interventions

论文作者

Rossetti, Giulio, Milli, Letizia, Citraro, Salvatore, Morini, Virginia

论文摘要

如今,由于SARS-COV-2大流行,流行性建模正在引起异质研究领域的研究人员的不断增长。实际上,有关计算流行病学的大量文献为分析研究提供了扎实的基础,以及针对预测性和规定情景描述的新型模型的定义。为了简化进入扩散建模的访问,在过去的十年中已经提出了几种编程库和工具:但是,据我们所知,它们都没有明确设计以允许其用户在其模型中集成公共干预措施。在这项工作中,我们介绍了UTLDR,该框架可以模拟几种公共干预措施(及其组合)对流行过程展开的影响。 UTLDR可以逐步设计隔室模型,并通过复杂的交互网络拓扑模拟它们。此外,它允许整合有关分析人群(例如年龄,性别,地理分配和移动性模式\ DOTS)的外部信息,并可以使用它来对设计模型进行分层和完善设计模型。引入框架后,我们提供了一些案例研究,以强调其灵活性和表现力。

Nowadays, due to the SARS-CoV-2 pandemic, epidemic modelling is experiencing a constantly growing interest from researchers of heterogeneous fields of study. Indeed, the vast literature on computational epidemiology offers solid grounds for analytical studies and the definition of novel models aimed at both predictive and prescriptive scenario descriptions. To ease the access to diffusion modelling, several programming libraries and tools have been proposed during the last decade: however, to the best of our knowledge, none of them is explicitly designed to allow its users to integrate public interventions in their model. In this work, we introduce UTLDR, a framework that can simulate the effects of several public interventions (and their combinations) on the unfolding of epidemic processes. UTLDR enables the design of compartmental models incrementally and to simulate them over complex interaction network topologies. Moreover, it allows integrating external information on the analyzed population (e.g., age, gender, geographical allocation, and mobility patterns\dots) and to use it to stratify and refine the designed model. After introducing the framework, we provide a few case studies to underline its flexibility and expressive power.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源