论文标题
使用恒定字母和列表大小的有效列表编码
Efficient List-Decoding with Constant Alphabet and List Sizes
论文作者
论文摘要
我们提出了具有恒定字母和恒定列表尺寸的可解码列表的明确,有效的代数构建。更具体地说,对于(0,1)$和$ε> 0 $中的任何$ r \,我们给出了一个代数构建无限的错误校正率代码$ r $的代码,比大小$(1/ε)^{o(1/ε^2)$的字母对$(1/ε)$(1/ε)$(1/ε^2)$列出了$(1-rif)$(1/ε^2)$(1-fraction) $ \ exp(\ mathrm {poly}(1/ε))$。此外,这些代码可以在时间$ \ mathrm {poly}(1/ε,n)$中编码,输出列表包含在最多$ \ mathrm {poly}(1/ε)$的尺寸的线性子空间中,并且该子空间的基础可以在时间$ \ mathrm {poly}(poly}(poly}(poly}(1/ε))中,该子空间可以找到。因此,编码和列表解码都可以在完全多项式时间$ \ mathrm {poly}(1/ε,n)$中执行,除了修剪子空间和输出最终列表外,该列表需要时间$ \ exp(\ mathrm {poly}(poly}(poly}(1/ε)(1/ε))) 我们的代码非常自然且结构化。具体而言,我们使用的代数几何(AG)代码限于子场的评估点,并且消息空间仅限于(精心选择的)线性子空间。我们的主要观察结果是,具有子场评估点的AG代码的输出列表包含在块 - 三角形对eplitz(BTT)矩阵的形象的仿射转移中,并且可以通过将消息空间限制为btt evasive subspace,这是一个较大的子空间,该列表的数量不在任何bttt evasive subpace,而列表的数量不在我们进一步展示了如何基于Guruswami和Kopparty(Combinatorica,2016年)和组成的明确子空间设计明确构建此类BTT回避子空间。
We present an explicit and efficient algebraic construction of capacity-achieving list decodable codes with both constant alphabet and constant list sizes. More specifically, for any $R \in (0,1)$ and $ε>0$, we give an algebraic construction of an infinite family of error-correcting codes of rate $R$, over an alphabet of size $(1/ε)^{O(1/ε^2)}$, that can be list decoded from a $(1-R-ε)$-fraction of errors with list size at most $\exp(\mathrm{poly}(1/ε))$. Moreover, the codes can be encoded in time $\mathrm{poly}(1/ε, n)$, the output list is contained in a linear subspace of dimension at most $\mathrm{poly}(1/ε)$, and a basis for this subspace can be found in time $\mathrm{poly}(1/ε, n)$. Thus, both encoding and list decoding can be performed in fully polynomial-time $\mathrm{poly}(1/ε, n)$, except for pruning the subspace and outputting the final list which takes time $\exp(\mathrm{poly}(1/ε))\cdot\mathrm{poly}(n)$. Our codes are quite natural and structured. Specifically, we use algebraic-geometric (AG) codes with evaluation points restricted to a subfield, and with the message space restricted to a (carefully chosen) linear subspace. Our main observation is that the output list of AG codes with subfield evaluation points is contained in an affine shift of the image of a block-triangular-Toeplitz (BTT) matrix, and that the list size can potentially be reduced to a constant by restricting the message space to a BTT evasive subspace, which is a large subspace that intersects the image of any BTT matrix in a constant number of points. We further show how to explicitly construct such BTT evasive subspaces, based on the explicit subspace designs of Guruswami and Kopparty (Combinatorica, 2016), and composition.