论文标题

使用恒定字母和列表大小的有效列表编码

Efficient List-Decoding with Constant Alphabet and List Sizes

论文作者

Guo, Zeyu, Ron-Zewi, Noga

论文摘要

我们提出了具有恒定字母和恒定列表尺寸的可解码列表的明确,有效的代数构建。更具体地说,对于(0,1)$和$ε> 0 $中的任何$ r \,我们给出了一个代数构建无限的错误校正率代码$ r $的代码,比大小$(1/ε)^{o(1/ε^2)$的字母对$(1/ε)$(1/ε)$(1/ε^2)$列出了$(1-rif)$(1/ε^2)$(1-fraction) $ \ exp(\ mathrm {poly}(1/ε))$。此外,这些代码可以在时间$ \ mathrm {poly}(1/ε,n)$中编码,输出列表包含在最多$ \ mathrm {poly}(1/ε)$的尺寸的线性子空间中,并且该子空间的基础可以在时间$ \ mathrm {poly}(poly}(poly}(poly}(1/ε))中,该子空间可以找到。因此,编码和列表解码都可以在完全多项式时间$ \ mathrm {poly}(1/ε,n)$中执行,除了修剪子空间和输出最终列表外,该列表需要时间$ \ exp(\ mathrm {poly}(poly}(poly}(1/ε)(1/ε))) 我们的代码非常自然且结构化。具体而言,我们使用的代数几何(AG)代码限于子场的评估点,并且消息空间仅限于(精心选择的)线性子空间。我们的主要观察结果是,具有子场评估点的AG代码的输出列表包含在块 - 三角形对eplitz(BTT)矩阵的形象的仿射转移中,并且可以通过将消息空间限制为btt evasive subspace,这是一个较大的子空间,该列表的数量不在任何bttt evasive subpace,而列表的数量不在我们进一步展示了如何基于Guruswami和Kopparty(Combinatorica,2016年)和组成的明确子空间设计明确构建此类BTT回避子空间。

We present an explicit and efficient algebraic construction of capacity-achieving list decodable codes with both constant alphabet and constant list sizes. More specifically, for any $R \in (0,1)$ and $ε>0$, we give an algebraic construction of an infinite family of error-correcting codes of rate $R$, over an alphabet of size $(1/ε)^{O(1/ε^2)}$, that can be list decoded from a $(1-R-ε)$-fraction of errors with list size at most $\exp(\mathrm{poly}(1/ε))$. Moreover, the codes can be encoded in time $\mathrm{poly}(1/ε, n)$, the output list is contained in a linear subspace of dimension at most $\mathrm{poly}(1/ε)$, and a basis for this subspace can be found in time $\mathrm{poly}(1/ε, n)$. Thus, both encoding and list decoding can be performed in fully polynomial-time $\mathrm{poly}(1/ε, n)$, except for pruning the subspace and outputting the final list which takes time $\exp(\mathrm{poly}(1/ε))\cdot\mathrm{poly}(n)$. Our codes are quite natural and structured. Specifically, we use algebraic-geometric (AG) codes with evaluation points restricted to a subfield, and with the message space restricted to a (carefully chosen) linear subspace. Our main observation is that the output list of AG codes with subfield evaluation points is contained in an affine shift of the image of a block-triangular-Toeplitz (BTT) matrix, and that the list size can potentially be reduced to a constant by restricting the message space to a BTT evasive subspace, which is a large subspace that intersects the image of any BTT matrix in a constant number of points. We further show how to explicitly construct such BTT evasive subspaces, based on the explicit subspace designs of Guruswami and Kopparty (Combinatorica, 2016), and composition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源