论文标题
Fermat类型多项式的Hochschild共同学与非亚伯对称性
Hochschild cohomology of Fermat type polynomials with non-abelian symmetries
论文作者
论文摘要
对于多项式$ f = x_1^n + \ dots + x_n^n $让$ g_f $是$ f $的非 - 阿贝尔最大群体。这是由\ mathrm {gl}(n,\ mathbb {c})$中的所有$ g \生成的组,重新缩放和置换变量,因此$ f(\ mathbf {x})= f(g \ cdot \ cdot \ cdot \ cdot \ cdot \ mathbf {x})$。对于任何$ g \ subseteq g_f $,我们要计算$ g $的类别的显式hochschild共同体 - $ f $的equivarint矩阵因素化$ f $。我们介绍了它的配对,表明它是Frobenius代数。
For a polynomial $f = x_1^n + \dots + x_N^n$ let $G_f$ be the non--abelian maximal group of symmetries of $f$. This is a group generated by all $g \in \mathrm{GL}(N,\mathbb{C})$, rescaling and permuting the variables, so that $f(\mathbf{x}) = f(g \cdot \mathbf{x})$. For any $G \subseteq G_f$ we compute explicitly Hochschild cohomology of the category of $G$--equivarint matrix factorizations of $f$. We introduce the pairing on it showing that it is a Frobenius algebra.