论文标题
Dilaton-Gravity,最小字符串的变形和矩阵模型
Dilaton-gravity, deformations of the minimal string, and matrix models
论文作者
论文摘要
在渐近广告中,大量的二维DILATON-GRAVITY理论在$ _2 $ spaceTimes上是对矩阵积分的全息偶,被解释为汉密尔顿人的平均平均值。与以前的工作相比,我们将这些理论视为具有缺陷气体的Jackiw-teitelboim重力,我们将这种双重性扩展到了更广泛的Dilaton电位,并通过包括具有较小缺陷角度的锥形缺陷。为了做到这一点,我们表明这些理论等于$(2,p)$最小弦理论的自然变形的大$ p $限制。
A large class of two-dimensional dilaton-gravity theories in asymptotically AdS$_2$ spacetimes are holographically dual to a matrix integral, interpreted as an ensemble average over Hamiltonians. Viewing these theories as Jackiw-Teitelboim gravity with a gas of defects, we extend this duality to a broader class of dilaton potentials compared to previous work by including conical defects with small deficit angles. In order to do this we show that these theories are equal to the large $p$ limit of a natural deformation of the $(2,p)$ minimal string theory.