论文标题
在二维远程ISING模型中零温度的变形
Zero-Temperature Coarsening in the Two-Dimensional Long-Range Ising Model
论文作者
论文摘要
我们研究了在$ d = 2 $空间尺寸中,我们研究了不受保守的ISING模型的淬火到零温度的非平衡动力学。在非平衡过程中,零温度的粗化始终是特别感兴趣的,因为通常观察到特殊的行为。我们提供了非平衡指数,即增长指数$α$,持久性指数$θ$和分形尺寸$ d_f $的估计值。发现生长指数$α\大约3/4 $独立于$σ$,与$α= 1/2 $不同,如最近的邻居模型所预期的。在可调相互作用的大$σ$中,仅恢复了最近的邻居ISING模型的分形尺寸$ d_f $,而其他指数则有很大差异。对于持久性指数$θ$,这是不同增长指数$α$的直接结果,从关系$ d-d_f =θ/α$可以理解。它们只是因增长指数$ \ 3/2 $的比率而有所不同。已经提出了这种关系用于歼灭过程,后来对$ d = 2 $最近的邻居iSing模型进行了数值测试。我们确认了所有研究的$σ$的关系,从而增强了其一般有效性。
We investigate the nonequilibrium dynamics following a quench to zero temperature of the non-conserved Ising model with power-law decaying long-range interactions $\propto 1/r^{d+σ}$ in $d=2$ spatial dimensions. The zero-temperature coarsening is always of special interest among nonequilibrium processes, because often peculiar behavior is observed. We provide estimates of the nonequilibrium exponents, viz., the growth exponent $α$, the persistence exponent $θ$, and the fractal dimension $d_f$. It is found that the growth exponent $α\approx 3/4$ is independent of $σ$ and different from $α=1/2$ as expected for nearest-neighbor models. In the large $σ$ regime of the tunable interactions only the fractal dimension $d_f$ of the nearest-neighbor Ising model is recovered, while the other exponents differ significantly. For the persistence exponent $θ$ this is a direct consequence of the different growth exponents $α$ as can be understood from the relation $d-d_f=θ/α$; they just differ by the ratio of the growth exponents $\approx 3/2$. This relation has been proposed for annihilation processes and later numerically tested for the $d=2$ nearest-neighbor Ising model. We confirm this relation for all $σ$ studied, reinforcing its general validity.