论文标题
适用于弱势试验问题的非常规量子退火方法的理论调查
Theoretical survey of unconventional quantum annealing methods applied to adifficult trial problem
论文作者
论文摘要
我们考虑对量子退火(QA)的一系列非常规修改,这些修改应用于人工试验问题,并具有连续可调的难度。在此问题中,受到较大系统中“横向场混乱”的启发,经典和量子方法转向错误的局部最小值。要从当地的最小值到全球最小值,所有N旋转都必须翻转,这使得这个问题成倍地解决。我们通过使用文献中的多种新方法来研究此问题:不均匀驾驶,添加横向耦合器和其他类型的相干振荡在横向字段项中(统称为RFQA)。我们表明,所有这些方法至少在某些方案中改善了解决方案时间的缩放(相对于标准均匀扫描演变)。对这些方法的比较可以帮助确定有希望的途径通往经典算法的可证明的量子加速,以解决近期量子退火硬件解决一些现实问题。
We consider a range of unconventional modifications to Quantum Annealing (QA), applied to an artificial trial problem with continuously tunable difficulty. In this problem, inspired by "transverse field chaos" in larger systems, classical and quantum methods are steered toward a false local minimum. To go from this local minimum to the global minimum, all N spins must flip, making this problem exponentially difficult to solve. We numerically study this problem by using a variety of new methods from the literature: inhomogeneous driving, adding transverse couplers, and other types of coherent oscillations in the transverse field terms (collectively known as RFQA). We show that all of these methods improve the scaling of the time to solution (relative to the standard uniform sweep evolution) in at least some regimes. Comparison of these methods could help identify promising paths towards a demonstrable quantum speedup over classical algorithms in solving some realistic problems with near-term quantum annealing hardware.