论文标题

分解基于内容的图像检索的医学图像的正常和异常特征

Decomposing Normal and Abnormal Features of Medical Images for Content-based Image Retrieval

论文作者

Kobayashi, Kazuma, Hataya, Ryuichiro, Kurose, Yusuke, Harada, Tatsuya, Hamamoto, Ryuji

论文摘要

医学图像可以分解为正常和异常特征,这被认为是组成性。基于这个想法,我们提出了一个编码器 - 码头网络将医疗图像分解为两个离散的潜在代码:正常的解剖码和异常解剖码。使用这些潜在代码,我们通过关注医学图像的正常特征或异常特征来证明相似性检索。

Medical images can be decomposed into normal and abnormal features, which is considered as the compositionality. Based on this idea, we propose an encoder-decoder network to decompose a medical image into two discrete latent codes: a normal anatomy code and an abnormal anatomy code. Using these latent codes, we demonstrate a similarity retrieval by focusing on either normal or abnormal features of medical images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源