论文标题

无线360°视频流的跨层优化和分布式增强学习

Cross Layer Optimization and Distributed Reinforcement Learning for Wireless 360° Video Streaming

论文作者

Elgabli, Anis, Elbamby, Mohammed S., Perfecto, Cristina, Krouka, Mounssif, Bennis, Mehdi, Aggarwal, Vaneet

论文摘要

无线流式传输高质量的360度视频仍然是一个具有挑战性的问题。当许多用户观看不同的360度视频并争夺计算和通信资源时,手头的流算法应最大化平均体验质量(QOE),同时保证每个用户的最低利率。在本文中,我们提出了一种横层优化方法,该方法最大化每个用户的可用速率并有效地使用它来最大化用户的QoE。特别是,我们考虑了一个基于瓷砖的360度视频流,我们优化了一个QOE度量,该QOE度量平衡了使每个用户的QoE和确保用户之间的公平性之间的权衡。我们表明,该问题可以将其解耦为两个相互关联的子问题:(i)物理层子问题,其目标是为每个用户找到下载率,以及(ii)应用程序层子问题,其目的是使用该速率来找到每个瓷砖的质量决策,以使用户的QoE最大化。我们证明,可以通过低复杂性来最佳解决物理层子问题,并提出了参与者 - 批判性的深钢筋学习(DRL)来利用多个独立药物的并行训练并解决应用层的子问题。与几种基线算法相比,广泛的实验揭示了我们方案的鲁棒性,并证明了其显着的性能提高。

Wirelessly streaming high quality 360 degree videos is still a challenging problem. When there are many users watching different 360 degree videos and competing for the computing and communication resources, the streaming algorithm at hand should maximize the average quality of experience (QoE) while guaranteeing a minimum rate for each user. In this paper, we propose a cross layer optimization approach that maximizes the available rate to each user and efficiently uses it to maximize users' QoE. Particularly, we consider a tile based 360 degree video streaming, and we optimize a QoE metric that balances the tradeoff between maximizing each user's QoE and ensuring fairness among users. We show that the problem can be decoupled into two interrelated subproblems: (i) a physical layer subproblem whose objective is to find the download rate for each user, and (ii) an application layer subproblem whose objective is to use that rate to find a quality decision per tile such that the user's QoE is maximized. We prove that the physical layer subproblem can be solved optimally with low complexity and an actor-critic deep reinforcement learning (DRL) is proposed to leverage the parallel training of multiple independent agents and solve the application layer subproblem. Extensive experiments reveal the robustness of our scheme and demonstrate its significant performance improvement compared to several baseline algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源