论文标题
FIT2FORM:机器人抓手形式设计的3D生成模型
Fit2Form: 3D Generative Model for Robot Gripper Form Design
论文作者
论文摘要
机器人最终效应器的3D形状在确定其功能和整体性能方面起着至关重要的作用。许多工业应用都依赖于特定于任务的抓地力设计来确保系统的稳健性和准确性。但是,手动硬件设计的过程既昂贵又耗时,而所得设计的质量取决于工程师的经验和域专业知识,这些专业知识很容易过时或不准确。这项工作的目的是使用机器学习算法来自动化特定于任务的抓手手指的设计。我们提出了FIT2Form,这是一个生成一对手指形状的3D生成设计框架,以最大程度地提高目标抓物对象的设计目标(即,掌握成功,稳定性和鲁棒性)。我们通过训练健身网络来对设计目标进行建模,以预测其对成对的手指及其相应抓握物体的值。然后,此健身网络为3D生成网络提供了监督,该网络为目标掌握对象生成一对3D指的几何形状。我们的实验表明,与其他通用和特定于任务的抓地力设计算法相比,提出的3D生成设计框架会产生平行的下颚抓手手指形状,可实现更稳定,更健壮的掌握。可以在https://youtu.be/utkhp3qb1bg上找到视频。
The 3D shape of a robot's end-effector plays a critical role in determining it's functionality and overall performance. Many industrial applications rely on task-specific gripper designs to ensure the system's robustness and accuracy. However, the process of manual hardware design is both costly and time-consuming, and the quality of the resulting design is dependent on the engineer's experience and domain expertise, which can easily be out-dated or inaccurate. The goal of this work is to use machine learning algorithms to automate the design of task-specific gripper fingers. We propose Fit2Form, a 3D generative design framework that generates pairs of finger shapes to maximize design objectives (i.e., grasp success, stability, and robustness) for target grasp objects. We model the design objectives by training a Fitness network to predict their values for pairs of gripper fingers and their corresponding grasp objects. This Fitness network then provides supervision to a 3D Generative network that produces a pair of 3D finger geometries for the target grasp object. Our experiments demonstrate that the proposed 3D generative design framework generates parallel jaw gripper finger shapes that achieve more stable and robust grasps compared to other general-purpose and task-specific gripper design algorithms. Video can be found at https://youtu.be/utKHP3qb1bg.