论文标题

异构图协作过滤

Heterogeneous Graph Collaborative Filtering

论文作者

Li, Zekun, Zheng, Yujia, Wu, Shu, Zhang, Xiaoyu, Wang, Liang

论文摘要

基于图的协作过滤(CF)算法已引起人们越来越多的关注。这些文献中的现有工作通常将用户项目交互作用作为两部分图形,其中用户和项目是两个孤立的节点集,它们之间的边缘表示它们的交互。然后,可以通过在双方图上建模高阶连接性来利用用户的偏好。在这项工作中,我们建议将用户项目交互作用建模为一个异质图,它不仅包括指示其交互作用的用户项目边缘,还包括用户用户边缘,表明其相似性。我们开发了基于GCN的框架异质图协作过滤(HGCF),可以通过嵌入异质图上的传播来明确捕获相互作用信号和相似性信号。由于异质图比两分图更连接,因此可以缓解稀疏性问题,并且可以降低对昂贵的高阶连通性建模的需求。在三个公共基准上进行的广泛实验表明了它优于最先进的实验。进一步的分析验证了图中用户边缘的重要性,证明了HGCF的理性和有效性是合理的。

Graph-based collaborative filtering (CF) algorithms have gained increasing attention. Existing work in this literature usually models the user-item interactions as a bipartite graph, where users and items are two isolated node sets and edges between them indicate their interactions. Then, the unobserved preference of users can be exploited by modeling high-order connectivity on the bipartite graph. In this work, we propose to model user-item interactions as a heterogeneous graph which consists of not only user-item edges indicating their interaction but also user-user edges indicating their similarity. We develop heterogeneous graph collaborative filtering (HGCF), a GCN-based framework which can explicitly capture both the interaction signal and similarity signal through embedding propagation on the heterogeneous graph. Since the heterogeneous graph is more connected than the bipartite graph, the sparsity issue can be alleviated and the demand for expensive high-order connectivity modeling can be lowered. Extensive experiments conducted on three public benchmarks demonstrate its superiority over the state-of-the-arts. Further analysis verifies the importance of user-user edges in the graph, justifying the rationality and effectiveness of HGCF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源