论文标题

使用FastFCN对卫星图像的语义分割进行LULC分类

LULC classification by semantic segmentation of satellite images using FastFCN

论文作者

Onim, Md. Saif Hassan, Ehtesham, Aiman Rafeed, Anbar, Amreen, Islam, A. K. M. Nazrul, Rahman, A. K. M. Mahbubur

论文摘要

本文分析了快速完全卷积网络(FASTFCN)在语义上段的卫星图像,从而对土地使用/土地覆盖(LULC)类别进行了分类。 Fast-FCN在Gaofen-2图像数据集(GID-2)上使用,以五个不同的类别进行分割:建筑,草地,农田,水和森林。结果表明,与使用FCN-8或Ecognition(一种易于使用的软件)相比,与联合(MIOU)(MIOU)(MIOU)(MIOU)(MIOU)(MIOU)(MIOU)(0.97)(0.97)(0.97)(0.97)的准确性(0.93),召回(0.98)(0.98)(0.98)(0.98)。我们提出了结果之间的比较。我们建议FASTFCN比其他现有的LULC分类方法更快,更准确。

This paper analyses how well a Fast Fully Convolutional Network (FastFCN) semantically segments satellite images and thus classifies Land Use/Land Cover(LULC) classes. Fast-FCN was used on Gaofen-2 Image Dataset (GID-2) to segment them in five different classes: BuiltUp, Meadow, Farmland, Water and Forest. The results showed better accuracy (0.93), precision (0.99), recall (0.98) and mean Intersection over Union (mIoU)(0.97) than other approaches like using FCN-8 or eCognition, a readily available software. We presented a comparison between the results. We propose FastFCN to be both faster and more accurate automated method than other existing methods for LULC classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源