论文标题

在有限的任务案件中

The Submodular Santa Claus Problem in the Restricted Assignment Case

论文作者

Bamas, Etienne, Garg, Paritosh, Rohwedder, Lars

论文摘要

Goemans,Harvey,Iwata和Mirrokni(Soda'09)在一项开创性的工作中引入了圣诞老人的Santa Claus问题,以应用其结构性结果。在提到的问题中,必须将$ n $无法确定的资源分配给$ m $ players,每个播放器都具有单调suppoular实用程序函数$ f_i $。目标是最大化$ \ min_i f_i(s_i)$,其中$ s_1,\ dotsc,s_m $是资源的分区。 Goemans等人的结果。表示多项式时间$ o(n^{1/2 +\ varepsilon})$ - 近似算法。从那时起,此问题的进展仅限于线性案例,也就是说,所有$ f_i $都是线性函数。特别是,一系列研究表明,在受限分配案例中,线性估值函数有多项式时间常数近似算法。这是给出每个播放器一组所需资源$γ_i$的特殊情况,并且单个估值功能定义为全局线性函数$ f $的$ f_i(s)= f(s \capγ_i)$。这也可以解释为最大化$ \ min_i f(s_i)$具有其他任务限制,即只能将资源分配给某些玩家。在本文中,我们为子模型变体取得了可比的进度。也就是说,如果$ f $是单调的subsodular函数,我们可以在多项式时间内计算$ o(\ log \ log \ log \ log(n))$ - 近似解决方案。

The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) as an application of their structural result. In the mentioned problem $n$ unsplittable resources have to be assigned to $m$ players, each with a monotone submodular utility function $f_i$. The goal is to maximize $\min_i f_i(S_i)$ where $S_1,\dotsc,S_m$ is a partition of the resources. The result by Goemans et al. implies a polynomial time $O(n^{1/2 +\varepsilon})$-approximation algorithm. Since then progress on this problem was limited to the linear case, that is, all $f_i$ are linear functions. In particular, a line of research has shown that there is a polynomial time constant approximation algorithm for linear valuation functions in the restricted assignment case. This is the special case where each player is given a set of desired resources $Γ_i$ and the individual valuation functions are defined as $f_i(S) = f(S \cap Γ_i)$ for a global linear function $f$. This can also be interpreted as maximizing $\min_i f(S_i)$ with additional assignment restrictions, i.e., resources can only be assigned to certain players. In this paper we make comparable progress for the submodular variant. Namely, if $f$ is a monotone submodular function, we can in polynomial time compute an $O(\log\log(n))$-approximate solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源