论文标题

深层人工神经元的持续学习

Continual Learning with Deep Artificial Neurons

论文作者

Camp, Blake, Mandivarapu, Jaya Krishna, Estrada, Rolando

论文摘要

真正的大脑中的神经元是非常复杂的计算单元。除其他外,它们负责将入站电化学向量转换为出站动作电位,更新中间突触的优势,调节自己的内部状态,并调节附近其他神经元的行为。有人可能会说这些细胞是唯一表现出真正智力的外观的东西。因此,奇怪的是,机器学习社区已经很长时间了,它依赖于可以将这种复杂性降低到简单的总和和火灾操作的假设。我们问,大大增加人造系统中个体神经元的计算能力是否有好处?为了回答这个问题,我们介绍了深人造神经元(DAN),它们本身就是深度神经网络。从概念上讲,我们将DAN嵌入了传统神经网络的每个节点中,并在多个突触部位连接了这些神经元,从而矢量介导了细胞对之间的连接。我们证明,可以将单个参数矢量进行元数据,我们将其配置为由网络中所有DAN共享的神经元表型,这有助于部署过程中的荟萃对象。在这里,我们将连续学习隔离为元学习,我们表明,合适的神经元表型可以赋予单个网络具有先天的能力,可以使用标准的反向传播,没有经验重播,也没有单独的唤醒/睡眠阶段,以最小的遗忘能力更新其突触。我们在连续非线性回归任务上证明了这种能力。

Neurons in real brains are enormously complex computational units. Among other things, they're responsible for transforming inbound electro-chemical vectors into outbound action potentials, updating the strengths of intermediate synapses, regulating their own internal states, and modulating the behavior of other nearby neurons. One could argue that these cells are the only things exhibiting any semblance of real intelligence. It is odd, therefore, that the machine learning community has, for so long, relied upon the assumption that this complexity can be reduced to a simple sum and fire operation. We ask, might there be some benefit to substantially increasing the computational power of individual neurons in artificial systems? To answer this question, we introduce Deep Artificial Neurons (DANs), which are themselves realized as deep neural networks. Conceptually, we embed DANs inside each node of a traditional neural network, and we connect these neurons at multiple synaptic sites, thereby vectorizing the connections between pairs of cells. We demonstrate that it is possible to meta-learn a single parameter vector, which we dub a neuronal phenotype, shared by all DANs in the network, which facilitates a meta-objective during deployment. Here, we isolate continual learning as our meta-objective, and we show that a suitable neuronal phenotype can endow a single network with an innate ability to update its synapses with minimal forgetting, using standard backpropagation, without experience replay, nor separate wake/sleep phases. We demonstrate this ability on sequential non-linear regression tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源