论文标题
用可分离的汉密尔顿 - 雅各比方程式从修改后的纽曼 - 贾尼斯算法旋转黑洞
Spinning black holes with a separable Hamilton-Jacobi equation from a modified Newman-Janis algorithm
论文作者
论文摘要
获得描述旋转紧凑型物体的爱因斯坦场方程的溶液通常具有挑战性。 Newman-Janis算法提供了一种从静态,球体对称,种子度量的旋转空间的过程。但是,不能保证所产生的旋转时空求解与种子相同的场方程。此外,前者可能不是圆形的,因此在Boyer-Lindquist样坐标中表达。在原始过程的变化中,已提出了修改后的纽曼 - 贾尼斯算法(MNJA),它通过构造构造起源于圆形的旋转时空,在boyer-lindquist类似的坐标中表达。作为下一侧,该过程引入了歧义,这需要对模型的物质内容进行额外的假设。在本文中,我们观察到,通过MNJA获得的旋转空间始终承认汉密尔顿 - 雅各比方程在无效的情况下的可分离性,在这种情况下,上述歧义没有影响,因为它构成了总体度量标准因子。我们还表明,如果等离子体频率遵守一定的约束,则在等离子体中传播的光线传播的汉密尔顿 - 雅各比方程可分离性。作为例证,我们计算了MNJA获得的一些旋转黑洞的阴影和镜头。
Obtaining solutions of the Einstein field equations describing spinning compact bodies is typically challenging. The Newman-Janis algorithm provides a procedure to obtain rotating spacetimes from a static, spherically symmetric, seed metric. It is not guaranteed, however, that the resulting rotating spacetime solves the same field equations as the seed. Moreover, the former may not be circular, and thus expressible in Boyer-Lindquist-like coordinates. Amongst the variations of the original procedure, a modified Newman-Janis algorithm (MNJA) has been proposed that, by construction, originates a circular, spinning spacetime, expressible in Boyer-Lindquist-like coordinates. As a down side, the procedure introduces an ambiguity, that requires extra assumptions on the matter content of the model. In this paper we observe that the rotating spacetimes obtained through the MNJA always admit separability of the Hamilton-Jacobi equation for the case of null geodesics, in which case, moreover, the aforementioned ambiguity has no impact, since it amounts to an overall metric conformal factor. We also show that the Hamilton-Jacobi equation for light rays propagating in a plasma admits separability if the plasma frequency obeys a certain constraint. As an illustration, we compute the shadow and lensing of some spinning black holes obtained by the MNJA.