论文标题

来自建筑物的热建模的移动性图推断

Mobility Map Inference from Thermal Modeling of a Building

论文作者

Islam, Risul, Lokhov, Andrey, Lemons, Nathan, Faloutsos, Michalis

论文摘要

我们考虑了从房间的温度来推断出移动图的问题,即每个时间戳的建筑物占用者的分布。我们还想探索噪声在温度测量,房间布局等中的影响。在建筑物内人们的运动重建中。我们提出的算法解决了上述挑战,利用了一个参数学习者,这是经过修改的最小平方估计器。在没有带有移动性图,房间和环境温度的完整数据集以及公共领域中的HVAC数据的情况下,我们模拟了建筑物中房间的基于物理的热模型,并评估了该模拟数据的推论算法的性能。我们在模型的输入温度数据中找到了噪声标准偏差(<= 1F)的上限。在此界限内,我们的算法可以使用合理的重建误差来重建移动性图。我们的工作可以用于广泛的应用中,例如,确保办公楼,老年人和婴儿监控,建筑资源管理,紧急建筑疏散以及HVAC数据脆弱性评估的物理安全。我们的工作汇集了多个研究领域,即热建模和参数估计,以实现推断大型办公大楼中人们分布的共同目标。

We consider the problem of inferring the mobility map, which is the distribution of the building occupants at each timestamp, from the temperatures of the rooms. We also want to explore the effects of noise in the temperature measurement, room layout, etc. in the reconstruction of the movement of people within the building. Our proposed algorithm tackles down the aforementioned challenges leveraging a parameter learner, the modified Least Square Estimator. In the absence of a complete data set with mobility map, room and ambient temperatures, and HVAC data in the public domain, we simulate a physics-based thermal model of the rooms in a building and evaluate the performance of our inference algorithm on this simulated data. We find an upper bound of the noise standard deviation (<= 1F) in the input temperature data of our model. Within this bound, our algorithm can reconstruct the mobility map with a reasonable reconstruction error. Our work can be used in a wide range of applications, for example, ensuring the physical security of office buildings, elderly and infant monitoring, building resources management, emergency building evacuation, and vulnerability assessment of HVAC data. Our work brings together multiple research areas, Thermal Modeling and Parameter Estimation, towards achieving a common goal of inferring the distribution of people within a large office building.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源