论文标题
基于核电站移动机器人的可见光通信的室内定位系统
Indoor Positioning System based on Visible Light Communication for Mobile Robot in Nuclear Power Plant
论文作者
论文摘要
可见光定位(VLP)被广泛认为是对机器人室内定位需求不断增长的成本效益的答案。考虑到某些极端环境要求机器人配备用于进行艰苦工作的精确和抗辐射式室内定位系统,因此提出了一种具有高精度的新型VLP系统,以实现在辐射环境下进行的长期播放检查和干预。拟议的具有足够耐受性的系统对于核设施中的操作检查,维护和干预任务至关重要。首先,我们设计了具有可见光通信(VLC)功能的智能LED灯,以动态创建室内GPS跟踪系统。通过在核电站的主要位置安装替换标准照明的拟议灯,提议的系统可以增强移动机器人的安全性,并有助于在大规模领域进行有效检查。其次,为了增强拟议系统的辐射耐受性和多刻录,我们为机器人垂直安装的摄像机提出了一种屏蔽保护方法,这确保了相机的图像元素,即捕获的VLP信息的图像元素不会受到辐射的影响。此外,使用基于分散校准方法的优化可见光定位算法,提出的VLP系统可以达到平均定位精度为0.82厘米,并确保90%的定位误差小于1.417 cm。因此,所提出的系统不仅具有足够的辐射耐受性,而且在可见光的光定位场中实现了最新的定位精度。
Visible light positioning (VLP) is widely believed to be a cost-effective answer to the growing demanded for robot indoor positioning. Considering that some extreme environments require robot to be equipped with a precise and radiation-resistance indoor positioning system for doing difficult work, a novel VLP system with high accuracy is proposed to realize the long-playing inspection and intervention under radiation environment. The proposed system with sufficient radiation-tolerance is critical for operational inspection, maintenance and intervention tasks in nuclear facilities. Firstly, we designed intelligent LED lamp with visible light communication (VLC) function to dynamically create the indoor GPS tracking system. By installing the proposed lamps that replace standard lighting in key locations in the nuclear power plant, the proposed system can strengthen the safety of mobile robot and help for efficient inspection in the large-scale field. Secondly, in order to enhance the radiation-tolerance and multi-scenario of the proposed system, we proposed a shielding protection method for the camera vertically installed on the robot, which ensures that the image elements of the camera namely the captured VLP information is not affected by radiation. Besides, with the optimized visible light positioning algorithm based on dispersion calibration method, the proposed VLP system can achieve an average positioning accuracy of 0.82cm and ensure that 90% positioning errors are less than 1.417cm. Therefore, the proposed system not only has sufficient radiation-tolerance but achieve state-of-the-art positioning accuracy in the visible light positioning field.