论文标题
固定者问题重新审视:当膨胀的理想聚合物循环的波动是非高斯的吗?
Fixman problem revisited: When fluctuations of inflated ideal polymer loop are non-Gaussian?
论文作者
论文摘要
我们考虑在大偏差状态下的平面理想聚合物环的统计数据,当回旋半径($ r_g $)略低于完全充气的环的半径,$ \ frac {l} {2π} $略小。具体而言,我们通过分析和通过武器外蒙特卡洛模拟进行研究,在布朗环回路合奏中的链单体相对波动。我们已经表明,在具有固定大回旋半径的制度中的这些波动是高斯,其关键指数$γ= \ frac {1} {2} $。但是,如果我们在膨胀的环中插入不可穿透的圆盘$ r_d = r_g $,则波动变为非高斯人,而关键指数$γ= \ frac {1} {1} {3} {3} $ the the Kardar-Paris-Parisi-parisi-Zhang gang task themality类典型。
We consider statistics of a planar ideal polymer loop of length $L$ in a large deviation regime, when a gyration radius, $R_g$, is slightly less than the radius of a fully inflated ring, $\frac{L}{2π}$. Specifically, we study analytically and via off-lattice Monte-Carlo simulations relative fluctuations of chain monomers in ensemble of Brownian loops. We have shown that these fluctuations in the regime with fixed large gyration radius are Gaussian with the critical exponent $γ= \frac{1}{2}$. However, if we insert inside the inflated loop the impenetrable disc of radius $R_d=R_g$, the fluctuations become non-Gaussian with the critical exponent $γ=\frac{1}{3}$ typical for the Kardar-Parisi-Zhang universality class.