论文标题
Frölicher光谱序列和Hodge结构在复杂的可行流形的共同体上
Frölicher spectral sequence and Hodge structures on the cohomology of complex parallelisable manifolds
论文作者
论文摘要
对于复杂的平行流形,$γ\ backslash g $,$ g $可溶解或半圣复合式谎言组,frölicher频谱序列在第二页上退化。在可解决的情况下,De-Rham的共同体具有纯粹的Hodge结构。相反,在半圣事的情况下,纯度取决于晶格,但是始终有De Rham的共同体的直接汇总,它确实具有纯粹的霍奇结构,并且独立于晶格。
For complex parallelisable manifolds $Γ\backslash G$, with $G$ a solvable or semisimple complex Lie group, the Frölicher spectral sequence degenerates at the second page. In the solvable case, the de-Rham cohomology carries a pure Hodge structure. In contrast, in the semisimple case, purity depends on the lattice, but there is always a direct summand of the de Rham cohomology which does carry a pure Hodge structure and is independent of the lattice.