论文标题
磁场线随机行走和太阳能粒子路径长度:随机理论和PSP/ISOIS观察
Magnetic Field Line Random Walk and Solar Energetic Particle Path Lengths: Stochastic Theory and PSP/ISoIS Observation
论文作者
论文摘要
背景:在2020年5月至6月,帕克太阳能探针/ISOIS仪器套件在0.35 au中观察到了六个太阳能离子事件。根据标准速度分散分析,在每个事件开始时,表观离子路径长度为0.625 au。目的:我们开发了一种形式主义,用于估计随机行驶磁场线的路径长度,以解释为什么事件发作处的明显离子路径长大超过了这些事件的径向距离。方法:我们开发了相对于不受干扰的平均场的随机行驶磁场线路径长度平均增加的分析估计。在太阳风湍流模型中对现场线和粒子轨迹的蒙特卡洛模拟用于验证形式主义并研究粒子引导中心和全轨道轨迹的路径长度。形式主义是在全球太阳风模型中实现的,结果与从ISOI观测值推论的离子路径长度进行了比较。结果:对于沿大规模场的路径长度的函数,获得了简单的估计值和严格的理论公式。从模拟的现场线和粒子轨迹中,我们发现粒子引导中心的路径长度比平均场合路径长度稍短,而粒子轨道由于其旋转的速度而具有非零有效的螺距角,因此粒子轨道的路径长大。结论:这些太阳能离子事件期间的较长的表观路径长度可以通过1)磁场线路径的长度增加,这是由于野外线随机行走而增加的,以及2)粒子在引导中心周围具有非零有效的螺距角。我们用于计算磁场线路径长度的形式主义(考虑到湍流波动的考虑)对于通常用于太阳颗粒传输的应用可能很有用。
Context:In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/ISoIS instrument suite at 0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is 0.625 AU at the onset of each event. Aims:We develop a formalism for estimating the path length of random-walking magnetic field lines, to explain why the apparent ion pathlength at event onset greatly exceeds the radial distance from the Sun for these events. Methods:We developed analytical estimates of the average increase in pathlength of random-walking magnetic field lines, relative to the unperturbed mean field. Monte Carlo simulations of fieldline and particle trajectories in a model of solar wind turbulence are used to validate the formalism and study the path lengths of particle guiding-center and full-orbital trajectories. The formalism is implemented in a global solar wind model, and results are compared with ion pathlengths inferred from ISoIS observations. Results:Both a simple estimate and a rigorous theoretical formulation are obtained for fieldlines' pathlength increase as a function of pathlength along the large-scale field. From simulated fieldline and particle trajectories, we find that particle guiding centers can have pathlengths somewhat shorter than the average fieldline pathlength, while particle orbits can have substantially larger pathlengths due to their gyromotion with a nonzero effective pitch angle. Conclusions:The long apparent path length during these solar energetic ion events can be explained by 1) a magnetic field line path length increase due to the field line random walk, and 2) particle transport about the guiding center with a nonzero effective pitch angle. Our formalism for computing the magnetic field line path length, accounting for turbulent fluctuations, may be useful for application to solar particle transport in general.