论文标题

SRF-GAN:用于多尺度表示的超级分辨功能GAN

SRF-GAN: Super-Resolved Feature GAN for Multi-Scale Representation

论文作者

Lee, Seong-Ho, Bae, Seung-Hwan

论文摘要

最新的卷积对象检测器利用了带有自上而下途径的多尺度特征表示,以便在不同尺度上检测对象并学习更强的语义特征响应。通常,在自上而下的功能传播期间,将更粗的特征图更加采样,以与从自下而上的途径转发的特征结合使用,更强大的更强语义特征是检测器标头的输入。但是,尽管它们引起嘈杂和模糊的特征,但仍然使用简单的插值方法(例如最近的邻居和双线性)来增加特征分辨率。在本文中,我们为卷积对象检测器的超级分辨特征提出了一种新颖的发电机。为了实现这一目标,我们首先设计了由基于检测的发电机和功能贴片鉴别器组成的超排除功能GAN(SRF-GAN)。此外,我们还提出了SRF-GAN损失,以共同产生超级分辨功能的高质量并共同提高检测准确性。我们的SRF发电机可以代替传统的插值方法,并易于微调与其他常规探测器结合使用。为了证明这一点,我们通过使用最近的几个单阶段和两个阶段检测器来实现SRF-GAN,并提高了这些检测器的检测准确性。代码可从https://github.com/shlee-cv/srf-gan获得。

Recent convolutional object detectors exploit multi-scale feature representations added with top-down pathway in order to detect objects at different scales and learn stronger semantic feature responses. In general, during the top-down feature propagation, the coarser feature maps are upsampled to be combined with the features forwarded from bottom-up pathway, and the combined stronger semantic features are inputs of detector's headers. However, simple interpolation methods (e.g. nearest neighbor and bilinear) are still used for increasing feature resolutions although they cause noisy and blurred features. In this paper, we propose a novel generator for super-resolving features of the convolutional object detectors. To achieve this, we first design super-resolved feature GAN (SRF-GAN) consisting of a detection-based generator and a feature patch discriminator. In addition, we present SRF-GAN losses for generating the high quality of super-resolved features and improving detection accuracy together. Our SRF generator can substitute for the traditional interpolation methods, and easily fine-tuned combined with other conventional detectors. To prove this, we have implemented our SRF-GAN by using the several recent one-stage and two-stage detectors, and improved detection accuracy over those detectors. Code is available at https://github.com/SHLee-cv/SRF-GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源