论文标题

带有复发性神经网络的动态占用网格映射

Dynamic Occupancy Grid Mapping with Recurrent Neural Networks

论文作者

Schreiber, Marcel, Belagiannis, Vasileios, Gläser, Claudius, Dietmayer, Klaus

论文摘要

建模和理解环境是自动驾驶的重要任务。除了检测物体外,在复杂的交通情况下,其他道路参与者的运动也引起了特别的兴趣。因此,我们建议使用复发性神经网络来预测动态占用网格图,该网格图将周围的车辆划分为细胞,每个车辆都包含占用概率和速度估计。在训练过程中,我们的网络馈送一系列测量网格图,该序列编码单个时间步的LIDAR测量值。由于卷积和经常性层的结合,我们的方法能够使用空间和时间信息来稳健地检测静态和动态环境。为了将我们的方法应用于移动的自我车辆的测量方法,我们提出了一种自我运动补偿的方法,该方法适用于神经网络体系结构中,其经常性层进行了不同的分辨率。在我们的评估中,我们将方法与最先进的粒子算法进行了比较,以证明速度估计值的提高准确性以及在静态和动态区域中环境的更强大的分离。此外,我们表明我们提出的自我运动补偿方法会导致在静止和移动的自我车辆的情况下可相当的结果。

Modeling and understanding the environment is an essential task for autonomous driving. In addition to the detection of objects, in complex traffic scenarios the motion of other road participants is of special interest. Therefore, we propose to use a recurrent neural network to predict a dynamic occupancy grid map, which divides the vehicle surrounding in cells, each containing the occupancy probability and a velocity estimate. During training, our network is fed with sequences of measurement grid maps, which encode the lidar measurements of a single time step. Due to the combination of convolutional and recurrent layers, our approach is capable to use spatial and temporal information for the robust detection of static and dynamic environment. In order to apply our approach with measurements from a moving ego-vehicle, we propose a method for ego-motion compensation that is applicable in neural network architectures with recurrent layers working on different resolutions. In our evaluations, we compare our approach with a state-of-the-art particle-based algorithm on a large publicly available dataset to demonstrate the improved accuracy of velocity estimates and the more robust separation of the environment in static and dynamic area. Additionally, we show that our proposed method for ego-motion compensation leads to comparable results in scenarios with stationary and with moving ego-vehicle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源