论文标题

多任务深度学习框架,使用动态功能连通性将雄性肿瘤患者的雄辩皮质定位

A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in Brain Tumor Patients Using Dynamic Functional Connectivity

论文作者

Nandakumar, Naresh, D'souza, Niharika Shimona, Manzoor, Komal, Pillai, Jay J., Gujar, Sachin K., Sair, Haris I., Venkataraman, Archana

论文摘要

我们提出了一个新颖的深度学习框架,该框架使用动态功能连通性同时将雄性皮质的语言和运动区域定位在脑肿瘤患者中。我们的方法利用卷积层从动态连接矩阵中提取基于图的特征,而长期术语内存(LSTM)注意力网络在分类过程中加权相关时间点。我们模型的最后阶段采用多任务学习来识别不同的雄辩子系统。我们独特的培训策略找到了感兴趣的认知网络之间的共同表示,这使我们能够处理缺失的患者数据。我们评估了来自56名脑肿瘤患者的静止状态fMRI数据的方法,同时使用fMRI激活作为替代地面真相标签进行训练和测试。我们的模型比传统的深度学习方法达到了更高的本地化精度,即使在左半球侧向案例进行训练时,也可以识别双边语言领域。因此,我们的方法最终可能对肿瘤患者的术前映射有用。

We present a novel deep learning framework that uses dynamic functional connectivity to simultaneously localize the language and motor areas of the eloquent cortex in brain tumor patients. Our method leverages convolutional layers to extract graph-based features from the dynamic connectivity matrices and a long-short term memory (LSTM) attention network to weight the relevant time points during classification. The final stage of our model employs multi-task learning to identify different eloquent subsystems. Our unique training strategy finds a shared representation between the cognitive networks of interest, which enables us to handle missing patient data. We evaluate our method on resting-state fMRI data from 56 brain tumor patients while using task fMRI activations as surrogate ground-truth labels for training and testing. Our model achieves higher localization accuracies than conventional deep learning approaches and can identify bilateral language areas even when trained on left-hemisphere lateralized cases. Hence, our method may ultimately be useful for preoperative mapping in tumor patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源