论文标题

具有频率依赖性选择和突变的Moran模型中的下降线

Lines of descent in a Moran model with frequency-dependent selection and mutation

论文作者

Baake, Ellen, Esercito, Luigi, Hummel, Sebastian

论文摘要

我们研究了在非线性优势或优胜金型冠状方案下具有突变和频率依赖性选择的两种摩ran模型的祖先结构。在适当的条件下,两者在分布中都导致了相同的类型频率过程。通过祖先选择图(ASG)的突变推理,我们开发了相应的被杀死和修剪的lookdown ASG,并使用它们来确定当前和祖先类型的分布。为此,我们建立了Moran模型和亲戚的阶乘二元性。我们将结果扩散限制扩散限制,并在有限种群的规模以及中等和弱选择的情况下进行应用。

We study ancestral structures for the two-type Moran model with mutation and frequency-dependent selection under the nonlinear dominance or fittest-type-wins scheme. Under appropriate conditions, both lead, in distribution, to the same type-frequency process. Reasoning through the mutations on the ancestral selection graph (ASG), we develop the corresponding killed and pruned lookdown ASG and use them to determine the present and ancestral type distributions. To this end, we establish factorial moment dualities to the Moran model and a relative. We extend the results to the diffusion limit and present applications for finite population size as well as moderate and weak selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源