论文标题

2D P-波超导体中的可扩展门定义的Majorana Fermions

Scalable Gate-Defined Majorana Fermions in 2D p-Wave Superconductors

论文作者

Lee, Ji Ung

论文摘要

我们为开发可扩展的拓扑量子计算机提供了一个概念框架。它依赖于使用二维P波超导体中的圆形电子门来形成主要的费米。大门允许精确控制Majorana fermions的数量,位置和动力学。使用一系列这样的门,可以实现拓扑量子计算的全部特征,包括大约当时在时空中的编织和融合。门有两个目的:它们在当地调节化学电位以将拓扑超导体变成正常的导体,并用于在时空中移动Mapoaranas。在垂直磁场的情况下,正常区域定位了量子的磁通量。在这些条件下,正常区域和超导区域之间的边界支持单个零能量的主要结合状态。本地化的零模式与其他状态完全分开,可以通过将电压依次将电压拖动到相邻门以实现量子计算来拖动。我们简要描述了构建设备并确定实验确定参数的关键特性的制造过程。拓扑保护的数字品质为不可避免的制造不均匀性提供了内在的免疫力。

We provide a conceptual framework for developing a scalable topological quantum computer. It relies on forming Majorana fermions using circular electronic gates in two-dimensional p-wave superconductors. The gates allow the precise control of the number, position, and dynamics of Majorana fermions. Using an array of such gates, one can implement the full features of topological quantum computation, including the braiding and fusion of Majoranas in space-time. The gates serve two purposes: They modulate the chemical potential locally to turn a topological superconductor into a normal conductor, and they are used to move the Majoranas in space-time. With a perpendicular magnetic field, the normal region localizes a quantum of magnetic flux. Under these conditions, the boundary between the normal region and the superconducting region supports a single zero-energy Majorana bound state. The localized zero mode is sufficiently separate from other states and can be dragged by sequentially applying voltages to the adjacent gates to implement quantum computation. We briefly describe the fabrication process to construct the device and determine key properties from experimentally determined parameters. The digital qualities of topological protection provide intrinsic immunity to the inevitable fabrication nonuniformities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源