论文标题

为任意线性操作员生成Pauli坐标的有效算法

Efficient algorithm for generating Pauli coordinates for an arbitrary linear operator

论文作者

Gunlycke, Daniel, Palenik, Mark C., Emmert, Alex R., Fischer, Sean A.

论文摘要

Several linear algebra routines for quantum computing use a basis of tensor products of identity and Pauli operators to describe linear operators, and obtaining the coordinates for any given linear operator from its matrix representation requires a basis transformation, which for an $\mathrm N\times\mathrm N$ matrix generally involves $\mathcal O(\mathrm N^4)$ arithmetic operations.本文中,我们提出了一种有效的算法,对于我们的特定基础转换,仅涉及$ \ mathcal o(\ mathrm n^2 \ log_2 \ log_2 \ mathrm n)$操作。由于该算法需要少于$ \ MATHCAL O(\ MATHRM n^3)$操作,因此对于大型$ \ Mathrm n $,它可以用作用于某些应用程序的量子计算算法的预处理步骤。作为演示,我们将算法应用于哈密顿量,该算法描述了相对论相互作用的自旋零玻色子系统,并使用量子计算机上的变异量子量化算法来计算地面能量。

Several linear algebra routines for quantum computing use a basis of tensor products of identity and Pauli operators to describe linear operators, and obtaining the coordinates for any given linear operator from its matrix representation requires a basis transformation, which for an $\mathrm N\times\mathrm N$ matrix generally involves $\mathcal O(\mathrm N^4)$ arithmetic operations. Herein, we present an efficient algorithm that for our particular basis transformation only involves $\mathcal O(\mathrm N^2\log_2\mathrm N)$ operations. Because this algorithm requires fewer than $\mathcal O(\mathrm N^3)$ operations, for large $\mathrm N$, it could be used as a preprocessing step for quantum computing algorithms for certain applications. As a demonstration, we apply our algorithm to a Hamiltonian describing a system of relativistic interacting spin-zero bosons and calculate the ground-state energy using the variational quantum eigensolver algorithm on a quantum computer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源