论文标题
令人兴奋的半导体超晶格中的连贯共振和随机共振
Coherence Resonance and Stochastic Resonance in an Excitable Semiconductor Superlattice
论文作者
论文摘要
集体电子传输导致在直流电压偏置下导致弱耦合的半导体超级晶格,是一种可兴奋的系统,具有$ 2N+2 $ 2 $的自由度:$ n $ superlattice时期的电子密度和田野,以及总电流以及注射器的总电流和田间。足够振幅的外部噪声会引起在没有噪声的情况下静止的状态的常规电流自我振荡(相干共振)。数值模拟表明,这些振荡是由于当电流低于临界值时在发射极处形成的电荷偶极波的反复成核和运动。在临界电流下,井井有条的隧穿电流与接触负载线相交。我们已经确定了来自实验和数值模拟的相干共振的设备依赖性临界电流。我们还通过数值模拟描述了一致性共振如何在其振荡模式被锁定到弱AC外部电压信号时触发随机共振。我们的结果与实验观察一致。
Collective electron transport causes a weakly coupled semiconductor superlattice under dc voltage bias to be an excitable system with $2N+2$ degrees of freedom: electron densities and fields at $N$ superlattice periods plus the total current and the field at the injector. External noise of sufficient amplitude induces regular current self-oscillations (coherence resonance) in states that are stationary in the absence of noise. Numerical simulations show that these oscillations are due to the repeated nucleation and motion of charge dipole waves that form at the emitter when the current falls below a critical value. At the critical current, the well-to-well tunneling current intersects the contact load line. We have determined the device-dependent critical current for the coherence resonance from experiments and numerical simulations. We have also described through numerical simulations how a coherence resonance triggers a stochastic resonance when its oscillation mode becomes locked to a weak ac external voltage signal. Our results agree with the experimental observations.