论文标题

重力波观测时代的贝叶斯波分析管道

The BayesWave analysis pipeline in the era of gravitational wave observations

论文作者

Cornish, Neil J., Littenberg, Tyson B., Bécsy, Bence, Chatziioannou, Katerina, Clark, James A., Ghonge, Sudarshan, Millhouse, Margaret

论文摘要

我们描述了贝叶斯波重力波瞬态分析管道的更新和改进,并提供了如何使用该算法来分析地面引力波检测器数据的示例。贝叶斯波通过框架功能(例如Morlet-Gabor小波或chirplets)以形态独立的方式模拟引力波信号。贝叶斯波使用参数化的高斯噪声组件以及非平稳和非高斯噪声瞬变的组合对仪器噪声进行建模。信号模型和噪声模型都采用了跨维采样,模型的复杂性适应数据的要求。该算法的灵活性使其适用于各种分析,包括重建通用的未建模信号;针对紧凑型二进制的建模分析进行交叉检查;以及将相干信号与不相干的仪器噪声瞬变(故障)分开。已扩展了贝叶斯波模型,以说明具有通用极化含量的重力波信号,并且数据中同时存在信号和故障。我们描述了贝叶斯波中的更新先前的分布,采样提案和燃烧阶段,这些阶段可显着提高采样效率。我们提出标准的审查检查,表明贝叶斯波反二维采样器的鲁棒性和收敛性。

We describe updates and improvements to the BayesWave gravitational wave transient analysis pipeline, and provide examples of how the algorithm is used to analyze data from ground-based gravitational wave detectors. BayesWave models gravitational wave signals in a morphology-independent manner through a sum of frame functions, such as Morlet-Gabor wavelets or chirplets. BayesWave models the instrument noise using a combination of a parametrized Gaussian noise component and non-stationary and non-Gaussian noise transients. Both the signal model and noise model employ trans-dimensional sampling, with the complexity of the model adapting to the requirements of the data. The flexibility of the algorithm makes it suitable for a variety of analyses, including reconstructing generic unmodeled signals; cross checks against modeled analyses for compact binaries; as well as separating coherent signals from incoherent instrumental noise transients (glitches). The BayesWave model has been extended to account for gravitational wave signals with generic polarization content and the simultaneous presence of signals and glitches in the data. We describe updates in the BayesWave prior distributions, sampling proposals, and burn-in stage that provide significantly improved sampling efficiency. We present standard review checks indicating the robustness and convergence of the BayesWave trans-dimensional sampler.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源