论文标题
观察到的循环的三维重建和热建模
Three-Dimensional Reconstruction and Thermal Modelling of Observed Loops
论文作者
论文摘要
由于其特征温度和密度,在极端紫外线(EUV)和柔软的X射线图像中可以看到活跃区域(ARS)中的环结构。基本物理参数(电子密度和温度以及磁场)的三维(3D)分布的半经验测定是冠状加热模型的关键限制。在这项工作中,我们开发了一种基于差分发射度量(DEM)分析的EUV明亮回路的技术,我们首先将其应用于{太阳能动力学天文台}(SDO)上{大气成像组装}(AIA)观察到的AR结构。观察到的EUV环的磁场的3D结构和强度是根据板SDO上的{Helioseiscic and Maginate Imager}(HMI)所取的磁力图对无力场外推建模的。在这项工作中,我们报告了在不同AR中识别的几个明亮循环获得的结果。我们的分析表明,温度分布的平均值和宽度几乎是沿环长度不变的。对于特定的循环,我们研究了其时间的演变,并发现这些特征在其大部分终身时间内保持近似恒定。该循环的外观和消失发生在时间尺度上,比其$ \ $ \ 2.5 $小时的寿命短得多。将该分析的结果与使用零维(0D)流体动力学模型,基于焓的基于环路的热演化(EBTEL)进行比较。我们研究了两种替代加热方案:首先,假设在准静态平衡中循环循环,我们使用恒定的加热速率,其次,我们使用冲动事件或纳米弹药加热回路。我们发现,相对于准静态平衡溶液,所有观察到的回路都是过量的,并且纳米液加热更好地再现了观察到的密度和温度。
Due to their characteristic temperature and density, loop structures in active regions (ARs) can be seen bright in extreme ultraviolet (EUV) and soft X-ray images. The semiempirical determination of the three-dimensional (3D) distribution of basic physical parameters (electronic density and temperature, and magnetic field) is a key constraint for coronal heating models. In this work we develop a technique for the study of EUV bright loops based on differential emission measure (DEM) analysis and we first apply it to AR structures observed by the {Atmospheric Imaging Assembly} (AIA) on board the {Solar Dynamics Observatory} (SDO). The 3D structure and intensity of the magnetic field of the observed EUV loops are modelled using force-free field extrapolations based on magnetograms taken by the {Helioseismic and Magnetic Imager} (HMI) on board SDO. In this work we report the results obtained for several bright loops identified in different ARs. Our analysis indicates that the mean and width of the temperature distributions are nearly invariant along the loop lengths. For a particular loop we study its temporal evolution and find that these characteristics remain approximately constant for most of its life time. The appearance and disappearance of this loop occurs at time-scales much shorter than its life time of $\approx 2.5$ hours. The results of this analysis are compared with numerical simulations using the zero-dimensional (0D) hydrodynamic model, Enthalpy-Based Thermal Evolution of Loops (EBTEL). We study two alternative heating scenarios: first, we apply a constant heating rate assuming loops in quasi-static equilibrium, and second, we heat the loops using impulsive events or nanoflares. We find that all the observed loops are overdense with respect to a quasi-static equilibrium solution and that the nanoflare heating better reproduces the observed densities and temperatures.