论文标题
超越弹球损失:校准不确定性定量的分位数方法
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
论文作者
论文摘要
在量化回归环境中不确定性的众多方式中,指定完整的分位数功能很有吸引力,因为分位数可以解释和评估。一个预测每个输入的真实条件分位数的模型,在所有分位数级别上都呈现了基本不确定性的正确有效表示。为了实现这一目标,许多当前基于分位数的方法着重于优化所谓的弹球损失。但是,这种损失限制了适用的回归模型的范围,限制了针对许多理想特性(例如校准,清晰度,中心间隔)的能力,并可能产生条件分位数差。在这项工作中,我们开发了解决这些缺点的新分数方法。特别是,我们提出的方法可以应用于任何类别的回归模型,允许在校准和清晰度之间选择权衡取舍,优化以校准中心间隔,并产生更准确的条件分位数。我们对我们的方法进行了彻底的实验评估,其中包括核融合中的高维不确定性量化任务。
Among the many ways of quantifying uncertainty in a regression setting, specifying the full quantile function is attractive, as quantiles are amenable to interpretation and evaluation. A model that predicts the true conditional quantiles for each input, at all quantile levels, presents a correct and efficient representation of the underlying uncertainty. To achieve this, many current quantile-based methods focus on optimizing the so-called pinball loss. However, this loss restricts the scope of applicable regression models, limits the ability to target many desirable properties (e.g. calibration, sharpness, centered intervals), and may produce poor conditional quantiles. In this work, we develop new quantile methods that address these shortcomings. In particular, we propose methods that can apply to any class of regression model, allow for selecting a trade-off between calibration and sharpness, optimize for calibration of centered intervals, and produce more accurate conditional quantiles. We provide a thorough experimental evaluation of our methods, which includes a high dimensional uncertainty quantification task in nuclear fusion.