论文标题
超短圆锥纳米孔中离子电流整流的调节
Modulation of Ionic Current Rectification in Ultra-Short Conical Nanopores
论文作者
论文摘要
表现出离子电流整流(ICR)的纳米孔的行为就像二极管,因此它们比另一个方向更有效地运输离子。圆锥纳米孔已显示出可整流离子电流,但只有长度至少500 nm的纳米电流表现出显着的ICR。在这里,通过有限元法,我们可以通过控制单个带电的表面,即内部孔隙表面(Surface_Inner)以及尖端和底部(surface_tip and surface_base)的外部孔隙表面(surface_inner)以及外部孔隙表面来调整其长度低于200 nm的圆锥纳米孔的ICR。带电的Surface_inner和Surface_TIP可以单独诱导明显的ICR,而带电的Surface_base对ICR的影响可以忽略。单独带充满电的Surface_inner可能会导致纳米孔反子选择性,并在尖端区域诱导显着的离子浓度极化,与所有表面充电相比,这会导致ICR反向ICR。另外,可以通过带电的Surface_inner的深度进一步调节整流的方向和程度。当仅考虑外膜表面时,带电的表面_TIP在相反的偏见下会导致孔内离子富集和耗竭,从而导致显着的ICR。它的有效区域在尖端孔的范围内约40 nm之内。我们还发现,由于沿孔轴的离子浓度调节的添加作用,孔系统的单个带电部分以增材方式促进了ICR。通过完全/部分带电的Surface_inner和Surface_TIP的各种组合,可以实现〜2至〜170的不同ICR比率。我们的发现阐明了超短圆锥纳米孔中离子电流整流的机理,并为离子电路和纳米流体传感器中超短圆锥纳米孔的设计和修饰提供了有用的指南。
Nanopores that exhibit ionic current rectification (ICR) behave like diodes, such that they transport ions more efficiently in one direction than the other. Conical nanopores have been shown to rectify ionic current, but only those with at least 500 nm in length exhibit significant ICR. Here, through the finite element method, we show how ICR of conical nanopores with length below 200 nm can be tuned by controlling individual charged surfaces i.e. inner pore surface (surface_inner), and exterior pore surfaces on the tip and base side (surface_tip and surface_base). The charged surface_inner and surface_tip can induce obvious ICR individually, while the effects of the charged surface_base on ICR can be ignored. The fully charged surface_inner alone could render the nanopore counterion-selective and induces significant ion concentration polarization in the tip region, which causes reverse ICR compared to nanopores with all surface charged. In addition, the direction and degree of rectification can be further tuned by the depth of the charged surface_inner. When considering the exterior membrane surface only, the charged surface_tip causes intra-pore ionic enrichment and depletion under opposite biases which results in significant ICR. Its effective region is within ~40 nm beyond the tip orifice. We also found that individual charged parts of the pore system contributed to ICR in an additive way due to the additive effect on the ion concentration regulation along the pore axis. With various combinations of fully/partially charged surface_inner and surface_tip, diverse ICR ratios from ~2 to ~170 can be achieved. Our findings shed light on the mechanism of ionic current rectification in ultra-short conical nanopores, and provide a useful guide to the design and modification of ultra-short conical nanopores in ionic circuits and nanofluidic sensors.