论文标题

样式干预:如何使用基于样式的发电机实现空间分离?

Style Intervention: How to Achieve Spatial Disentanglement with Style-based Generators?

论文作者

Liu, Yunfan, Li, Qi, Sun, Zhenan, Tan, Tieniu

论文摘要

具有基于样式的发电机(例如StyleGAN)成功实现对图像综合的语义控制的生成对抗网络(GAN),并且最近的研究还表明,可以通过修改潜在代码来获得可解释的图像翻译。但是,就低级图像内容而言,在潜在空间中旅行将导致相应图像中的“空间纠缠变化”,这在需要本地编辑的许多真实世界应用中是不希望的。为了解决此问题,我们分析了“样式空间”的属性,并探索了使用预先训练的基于样式的发电机来控制本地翻译的可能性。具体而言,我们提出了“样式干预”,这是一种基于轻量优化的算法,可以适应任意输入图像并在灵活的目标下呈现自然翻译效果。我们在高分辨率图像上验证了面部属性编辑中提出的框架的性能,在该图像中都需要光真实和一致性。广泛的定性结果证明了我们方法的有效性,定量测量还表明,所提出的算法在各个方面都优于最先进的基准。

Generative Adversarial Networks (GANs) with style-based generators (e.g. StyleGAN) successfully enable semantic control over image synthesis, and recent studies have also revealed that interpretable image translations could be obtained by modifying the latent code. However, in terms of the low-level image content, traveling in the latent space would lead to `spatially entangled changes' in corresponding images, which is undesirable in many real-world applications where local editing is required. To solve this problem, we analyze properties of the 'style space' and explore the possibility of controlling the local translation with pre-trained style-based generators. Concretely, we propose 'Style Intervention', a lightweight optimization-based algorithm which could adapt to arbitrary input images and render natural translation effects under flexible objectives. We verify the performance of the proposed framework in facial attribute editing on high-resolution images, where both photo-realism and consistency are required. Extensive qualitative results demonstrate the effectiveness of our method, and quantitative measurements also show that the proposed algorithm outperforms state-of-the-art benchmarks in various aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源