论文标题

元启发式学“大”

Metaheuristics "In the Large"

论文作者

Swan, Jerry, Adriaensen, Steven, Brownlee, Alexander E. I., Hammond, Kevin, Johnson, Colin G., Kheiri, Ahmed, Krawiec, Faustyna, Merelo, J. J., Minku, Leandro L., Özcan, Ender, Pappa, Gisele L., García-Sánchez, Pablo, Sörensen, Kenneth, Voß, Stefan, Wagner, Markus, White, David R.

论文摘要

在经过数十年的持续改进之后,元启发术是优化研究的巨大成功案例之一。但是,为了避免分裂和缺乏可重复性的元启发术研究,迫切需要更强大的科学和计算基础设施来支持新方法的开发,分析和比较。我们认为,通过原则选择基础设施支持,该领域可以进行更高的科学询问。我们描述了我们关于进步的愿景和报告,展示了如何采用所有元启发式学的共同协议可以帮助解放该领域的潜力,从而减少概览元启发式设计空间的探索。

Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源